From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-10.3 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING, SPF_HELO_NONE,SPF_PASS,USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id BB87EC4338F for ; Tue, 3 Aug 2021 14:31:43 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id 9635860F92 for ; Tue, 3 Aug 2021 14:31:43 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S236495AbhHCObx (ORCPT ); Tue, 3 Aug 2021 10:31:53 -0400 Received: from mga06.intel.com ([134.134.136.31]:33840 "EHLO mga06.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S234683AbhHCObw (ORCPT ); Tue, 3 Aug 2021 10:31:52 -0400 X-IronPort-AV: E=McAfee;i="6200,9189,10065"; a="274758966" X-IronPort-AV: E=Sophos;i="5.84,291,1620716400"; d="gz'50?scan'50,208,50";a="274758966" Received: from fmsmga007.fm.intel.com ([10.253.24.52]) by orsmga104.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 03 Aug 2021 07:31:39 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.84,291,1620716400"; d="gz'50?scan'50,208,50";a="441201792" Received: from lkp-server01.sh.intel.com (HELO d053b881505b) ([10.239.97.150]) by fmsmga007.fm.intel.com with ESMTP; 03 Aug 2021 07:31:36 -0700 Received: from kbuild by d053b881505b with local (Exim 4.92) (envelope-from ) id 1mAvSB-000Dzb-KK; Tue, 03 Aug 2021 14:31:35 +0000 Date: Tue, 3 Aug 2021 22:30:35 +0800 From: kernel test robot To: Mark Rutland Cc: kbuild-all@lists.01.org, linux-kernel@vger.kernel.org, x86@kernel.org, Peter Zijlstra Subject: [tip:locking/core 19/21] include/linux/atomic/atomic-instrumented.h:476:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 37) Message-ID: <202108032229.Bbm4N5a2-lkp@intel.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="PNTmBPCT7hxwcZjr" Content-Disposition: inline User-Agent: Mutt/1.10.1 (2018-07-13) Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org --PNTmBPCT7hxwcZjr Content-Type: text/plain; charset=us-ascii Content-Disposition: inline tree: https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git locking/core head: cf3ee3c8c29dc349b2cf52e5e72e8cb805ff5e57 commit: e3d18cee258b898017b298b5b93f8134dd62aee3 [19/21] locking/atomic: centralize generated headers config: ia64-randconfig-s032-20210803 (attached as .config) compiler: ia64-linux-gcc (GCC) 10.3.0 reproduce: wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # apt-get install sparse # sparse version: v0.6.3-341-g8af24329-dirty # https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=e3d18cee258b898017b298b5b93f8134dd62aee3 git remote add tip https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git git fetch --no-tags tip locking/core git checkout e3d18cee258b898017b298b5b93f8134dd62aee3 # save the attached .config to linux build tree COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-10.3.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' O=build_dir ARCH=ia64 SHELL=/bin/bash If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) lib/atomic64_test.c: note: in included file (through include/linux/atomic.h): >> include/linux/atomic/atomic-instrumented.h:476:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 37) include/linux/atomic/atomic-instrumented.h:476:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 1337) include/linux/atomic/atomic-instrumented.h:483:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 37) include/linux/atomic/atomic-instrumented.h:483:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 1337) include/linux/atomic/atomic-instrumented.h:490:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 37) include/linux/atomic/atomic-instrumented.h:490:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 1337) include/linux/atomic/atomic-instrumented.h:497:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 37) include/linux/atomic/atomic-instrumented.h:497:16: sparse: sparse: cast truncates bits from constant value (ffffffffaaa31337 becomes 1337) >> include/linux/atomic/atomic-instrumented.h:476:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 22) include/linux/atomic/atomic-instrumented.h:476:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 2222) include/linux/atomic/atomic-instrumented.h:483:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 22) include/linux/atomic/atomic-instrumented.h:483:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 2222) include/linux/atomic/atomic-instrumented.h:490:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 22) include/linux/atomic/atomic-instrumented.h:490:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 2222) include/linux/atomic/atomic-instrumented.h:497:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 22) include/linux/atomic/atomic-instrumented.h:497:16: sparse: sparse: cast truncates bits from constant value (11112222 becomes 2222) >> include/linux/atomic/atomic-instrumented.h:1054:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d) >> include/linux/atomic/atomic-instrumented.h:1054:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d00d) >> include/linux/atomic/atomic-instrumented.h:1054:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes c001d00d) include/linux/atomic/atomic-instrumented.h:1061:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d) include/linux/atomic/atomic-instrumented.h:1061:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d00d) include/linux/atomic/atomic-instrumented.h:1061:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes c001d00d) include/linux/atomic/atomic-instrumented.h:1068:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d) include/linux/atomic/atomic-instrumented.h:1068:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d00d) include/linux/atomic/atomic-instrumented.h:1068:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes c001d00d) include/linux/atomic/atomic-instrumented.h:1075:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d) include/linux/atomic/atomic-instrumented.h:1075:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes d00d) include/linux/atomic/atomic-instrumented.h:1075:16: sparse: sparse: cast truncates bits from constant value (aaa31337c001d00d becomes c001d00d) >> include/linux/atomic/atomic-instrumented.h:1054:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes 1) >> include/linux/atomic/atomic-instrumented.h:1054:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f001) >> include/linux/atomic/atomic-instrumented.h:1054:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f00df001) include/linux/atomic/atomic-instrumented.h:1061:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes 1) include/linux/atomic/atomic-instrumented.h:1061:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f001) include/linux/atomic/atomic-instrumented.h:1061:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f00df001) include/linux/atomic/atomic-instrumented.h:1068:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes 1) include/linux/atomic/atomic-instrumented.h:1068:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f001) include/linux/atomic/atomic-instrumented.h:1068:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f00df001) include/linux/atomic/atomic-instrumented.h:1075:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes 1) include/linux/atomic/atomic-instrumented.h:1075:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f001) include/linux/atomic/atomic-instrumented.h:1075:16: sparse: sparse: cast truncates bits from constant value (faceabadf00df001 becomes f00df001) vim +476 include/linux/atomic/atomic-instrumented.h aa525d063851a9 include/asm-generic/atomic-instrumented.h Mark Rutland 2018-09-04 471 c020395b6634b7 include/asm-generic/atomic-instrumented.h Marco Elver 2019-11-26 472 static __always_inline int aa525d063851a9 include/asm-generic/atomic-instrumented.h Mark Rutland 2018-09-04 473 atomic_cmpxchg(atomic_t *v, int old, int new) aa525d063851a9 include/asm-generic/atomic-instrumented.h Mark Rutland 2018-09-04 474 { 3570a1bcf45e9a include/asm-generic/atomic-instrumented.h Marco Elver 2020-07-24 475 instrument_atomic_read_write(v, sizeof(*v)); aa525d063851a9 include/asm-generic/atomic-instrumented.h Mark Rutland 2018-09-04 @476 return arch_atomic_cmpxchg(v, old, new); aa525d063851a9 include/asm-generic/atomic-instrumented.h Mark Rutland 2018-09-04 477 } aa525d063851a9 include/asm-generic/atomic-instrumented.h Mark Rutland 2018-09-04 478 :::::: The code at line 476 was first introduced by commit :::::: aa525d063851a98e020b827fdd1d7776ae652301 locking/atomics: Switch to generated instrumentation :::::: TO: Mark Rutland :::::: CC: Ingo Molnar --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --PNTmBPCT7hxwcZjr Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICME8CWEAAy5jb25maWcAlDzbcts2sO/9Ck0zc6Z9SCPJjpPOGT+AICihIggGAGXJLxzF VlJNbcsjOW3z92cXvAEk6PR0WtfcXSwXi8XeAPrNT28m5NvL8XH3crjbPTx8n3zdP+1Pu5f9 /eTL4WH/v5NYTjJpJizm5jcgTg9P3/59d9hdXU7e/za7+G369nQ3m6z2p6f9w4Qen74cvn6D 4Yfj009vfqIyS/iipLRcM6W5zErDNub6Zxz+9gE5vf16dzf5ZUHpr5PZ9Ddg97MziOsSMNff G9CiY3Q9m04vptOWOCXZosW1YKItj6zoeACoIZtfvJ/OG3gaI2mUxB0pgMKkDmLqiLsE3kSL ciGN7Lg4CJ6lPGMdiqtP5Y1UK4CAst5MFlb1D5Pz/uXbc6e+SMkVy0rQnha5MzrjpmTZuiQK ZOKCm+uLVkYqRc5TBvrWxpmRpCRtRP+5VXVUcJiSJqlxgDFLSJEa+5oAeCm1yYhg1z//8nR8 2v/aEugbgkK+mTTPW73mOZ0czpOn4wvOraG8IYYuy08FK5g7gCqpdSmYkGpbEmMIXbqDW7pC s5RHAb5LsmagFOBNCrBaEABmnTZKBqVPzt8+n7+fX/aPnZIXLGOKU7smKVsQunXszsHlSkYs jNJLeRPG0CXP/WWPpSA882GaixBRueRM4XS2PjYh2jDJOzRMPItTWN2hEEJzHDOK6OR5M9k/ 3U+OX3p6arcPqpWCHa20LBRlZUwMGbI1XLBy3Wm+sT+rWItV8JOu3HXPFWMiN2UmMxZc8IZg LdMiM0RtA2tf03SvbAZRCWMGYNwHtV3QvHhndue/Ji+Hx/1kB0o4v+xezpPd3d3x29PL4elr ZywoegkDSkItX54t3JmsuTI9dJkRw9fheUU6RrOiDMweRpjw5DX34fUy/QexW58AEnEtU+JO W9FioofbwYB+SsANFVkBW7ngsWSbnCkTWA3tcbA8eyCiV9ryqC0ngBqAipiF4EYR2kMgY23A BNEfCpn5mIwx8HpsQaOUWy/ZKtVXSrvpVtUvzjZcLRmJccc9di4W/WkCzoAn5nr2oVMfz8wK nGzC+jQXnuMqMpA4Atet6RLks3utWSx99+f+/tvD/jT5st+9fDvtzxZcSx3A9oIQiDCbf3Ri 00LJInf8RU4WrNoqTHVQ8MV00Xsc+PkoXdX8AoZQIaopdYwSwlUZxNAEYjF4sxsem6VnbsYd ENwp9btyHutxSVQsSF8PZQIGeutOvIbHbM0pG4BhP+F29WJXhRFchwJeyy4qPH+BcVTnYL1B gZeMrnIJS1cqCOZSOYJUJkIKIy1nB7HVoMGYwaalxLia7WPK9dzZFSwlTpTBJYW52xRAOTzs MxHApwoCmB50KxSXi1ueB5cGcBHg5mPI9FaQMdzmNqAcO8ZJtuzzpfd8q40jeiQlxgJ/G8Pu kBALBL9lZSJVCd4M/idIRv3EpEem4ZeQ04OoZ9IqUhYZSfkig5gG2Y5y/E/lMp09BTkVh4xG eanTghkBvq2sA2n4ZbgMbaBtxyZVMhCOJVLzTRWFQxZXuSpvbxeLICOWJqBMFdJCRDRoqegJ VUD+H+aUS39+nRJAfyRNwnvdzsHHNQzXLDNuNq+X4LecOoBLVzIuywKmvQhwIvGaw1xqHWt3 FHCMiFKQgAWlWyH9Vuhw1M+TV9YVTcEm2u4UVlR4LhfezuKYhaaf09n0sgkbdXWW709fjqfH 3dPdfsL+3j9BlkAgclDME/YnL5T8xxHN29ai0ncTOpyIgoUIMVDDeAalUxKFVzstQim9TmXk LCWMBt0riFV1OeLxXhZJAvHTxjLQLtQ84DXDe8cwYTNYrOd4wmmTGrU7QSY8bbK7Wjd+ldaS LqqonYIiwEguKs3np+Pd/nw+niYv35+r9MyJ3I3tkSvHZV1dRtxxDLeQDZcQrC4cNy2Ek+NA tkBXVe6jizyXrldp0nEwMh4pcPegL8/D24xDM4PxElJym7Mq5kTGWHDHaSXOQxV7JJSdEDch gJU2RrnRE+cFHpCSKko1K+HsQesiNdOgvZbQQWP1ZokcnoZkvBDeJqQrKKzZNmhPVgZrCeit y8tV2Ox6ZB9XISPsEc2uVpErx/K2nE2noXr0tpy/n/ZIL3zSHpcwm2tg4wkTqRScQNFTeTor rSrr/PKqN0294GWxHlfDEpKriIBHBDMb0wLdQl7qtjIgHoIBCrKxBisVJMXXs5mzKUUoLbQG AGU8o6Yp+IUEE+2ZSAIlC6BLluEW6yEhcVKa/Qd05yrcmQhKIO2hEhzAtsvi66WGrZ9IgPoK ErRkSkEW9AcbKdYsGetXbD0lE5GWWXITjhxsw2gQQxXRyzIufH1aZ5McTo//7E77SXw6/F05 9FYTAvar4LBHb2Cb18X+o4/OB+gubnMlIH9huEiChHM7cA4QdeLQMoMT4bFr/wCoMpcwMQhD MjAmuuTg/DKZWeYJeJCI+D2DiIrLD5tNma3BBQWYLaRcgFNu5HeH1ihMX2xSaN33QKfw4skv 7N+X/dP58Plh3+mYYwT8srvb/wqV4vPz8fRSdRE6ZaxJMLtqUFDR22T+cQTRdtpirn27RkIU OZVYe2I2a5RM3fVCCuz8jS6Uonw+nLFHUr8W1pRj/Ak2H/4/2nGlpwVMEWxOx6bEnQcxSTfJ itl/Pe0mXxpO99aW3dxkhKBBD3dBg3ktGFfR+vgPFM+Q7uy+7h8h27EkBDbG5PiMHe2zu8R5 yN4ql1OFYWzm5E7A7D0hpeCLpan7lXb/xdSnb3KUamNCqIdVdcJ8K4yltXXlYiQXrbjlVA2X 3aVgtGKT6J4gpC9ZRIxBn9mXIiqMkdkYf8OzbT2bitDxQkF8nf9fX3z06BLiOahq/pKuxude d9jkK+rhuQi77E69Y/PCXQJJqukpCfcm+FI3K7JwzHP8iSsWFxTSpCVRsXW1Mku3vVG2YR7L xUDn1e9BdwpTwrJVsYWX2UZbQxUdYLswsxzigy7gx3umzVp1zmj/qGN3uvvz8LK/w1349n7/ DFyRSbffmvyBQZrp1V4r24kPTdnuJ5tGl7b6xuST4tr38t6aQx+qmAki7I61ifZSytUwyYYU p+QxnrksIYWOe1vd2DreqAJSHbRqU0WyMZKxbLniXQ0PEVWSaoF5VH3Qo3ssLEmGURZ7kVBS bujSaYakRtoWfI9noKf9YwrUTY8K5GoSM0ax5HLKGhkXKfg3qAhsZwG7Ub3RbAOL2tdvXWJe zHHFsSPQGhmkdW8/7877+8lfVUH7fDp+OTxUvfyuoHuNrF/1/cBg28YTJLTY7HCtyLZEtMBG zbQ3574S6nwaI/wAVWQ1uKuA3DEVOujGHJsYwyMfrWhzXEtGmjINJQ85xBqJy6LwTKO2pv7g Fj/aLuwT+i3AUTLs+L1GiNvmBnu0ujqYqZuvJRc2bIdnZF0ClARmef3zu/Pnw9O7x+M92Mnn fXeMWrfq20fYzVSja/9UeMewTV810osgEIr1UBPWsIXiJtifrVGlmU2HaKzIYh9MRYxH0aUt jpSPu4m81KIGleJTuI2Fs8RGAFRLowTVwTcUaFRt7aHbIM/Od6eXA26hiYHczHH8IKHhxtpi vMaOrGf5BNL3rKMJRWe+6fDuUKmT1wdCckbCQ4khir86GGqX8FChY6lfHZrGIjwUEWM5CNb0 7qAaDOWDGpu/Ll5X3AqqQhJiagu9IRjP+a8+hjCOsTliNPlDb+FdSxSfMK/yrRNgGGhs97Y6 z5fdwZdjN0DHZdWjiiFa+BcvHORqG/lN9wYRJZ+CCY//vtZadDZz9J7VFq9znlmP7DqG7pip KjH/3d99e9lh/YQ3bia24/ri1RoRzxJhMCiGOu0VUlPFc+MmxTVi7DBKYspZN5Sbem5EFCuL 2D8eT98nokv1AlnaK62cposjSFYQ71ig69FUuIC09WCfG0SW2PYkYJx7+NWyW1f9ikFnqBbQ PQx3M6SKvKFaSpOnxeJHNAp+W7tnc3kK6UhucO0xLdLXl17CQvsb0nYWFcMYFD6IAIekeuJi fYESYSLotK2XWyg+4xhqvX472SZpkOFFhZNzrLSj2KbtYBUneGYZXV9Of79qKOy5edMuXjlD acpI1cX1Dn0UCImnxSEjtKewXdUBHmfg4jzsWNcIcdi51tftifttLqVnZrdREc4Lbi8SmY6g bL4mw704m+3bZcOyYBVeNVAU6glr97bHsSjyqj/ztN/fnycvx8mfu7/3Ezt1KHNgO+IevHeT 1PHd55wjMzMIrPH+78NdoCVo02nPu1bpowfqP9StQe0DA6ePALaGDGYWPJzisFK58NhYSOg8 p8XZtoAmI7dofDJskvwn4u6od0RQ2MK+oHhnagAIXupqcFUTu25f6t7cyk8FV6twQm5VPhLy reZNEfmvq4zMATBKRP+NXIbb/4jLFR95WU40j33mKYnYYN3Rt5SmgOgnk2RU+5aqXu0xzSMJ FqnBN4ysXIiQqTn+CJ+3VN4dyYdJKcDujk8vp+MD3qq5b/eQpzFCFGSmKtx6slJs8AxxU2Y3 4QwZmSQGfoaPjxCN+T0ZqEFRouxFzJFRiOpuPnnvs6i6czGm/krswVvr2VC/Aepx3yDnEaHW F5AmiN4OwnoTQpsbo+27SGoYTPyxJ0IFxr312szNssiwQZ6zwQ7w8LhFxnSgIHr7tzc9sGXU dfIsTrCYE8NWvSENGLV+MZhRpKjQJnTqWA3mFF7ZvvB749vPh69PN9jsRlOlR/ilO4xwx8c3 PWnim4aT62oU+bDZhGBDYssih/QpDA1wZ5ttJgfej4vN1disdc6Iml30RVqxrTZeh8qFNm/2 3pKSLVgYJfmYVS65der+onyCvTO+q7E+ikn5cTUmPpQ7OaNXfZOuoCExma3k03IRPhS0FCuu eDaOxnmUo4YERqjdlrsdYn3L7PfLEXDIxKG+yfHa8WC3DiaUFB8uewfddULzmvFW9cbxM/jb wwOi968Zt5ARXzOe9jdcDQ7ZbourLdgXurMW3KyXQfFfka4KELv7PV6bseguiJwn5+AcKIlZ Rvvur4aGbaVBttttZM3/+DCf9faKBXVcm6vEPxS5LdrDgbENmuzp/vl4eHrph0qWxfaWSPgk wR3Ysjr/c3i5+zMcht1M6Ab+5YYuDaPWuTpMx1k4tcUmLceSVYiysbsBBOW9kIQQ26wtKQ9W J8Chqrjqeb29253uJ59Ph/uvey+h2LLMkJAU8dWH+e/eVYSP8+nv81GBseuKNYfbYFck5zGX AwCe9VZ39mVhri+m3UsagrraVZvSbMqxLmnLrb7fOuBRCOyBc9ops8HRpSDZEGwbsiWN2Rpw 1XX13fPhHlsw1ZoObKEZaTR//2EzFILmuoR4MngT0l99DAgG9OAD5kOM2ugqlLv3xsPSdSde h7u6EpvIfu+kqG7QLVmau47VA9f9Z+e2LajGiDxYEsPqZzFJe833XFUM2ysd9uOf8bskD0fw CqdOzOSmrO4dOIVjA7K1cIxX251u4QZq4+4Chit7Nw5vO9ZTDPV+Wrqmxe/qvC+p06a1fX7s gDe9rmDcrKruWEFACJcINQFbq+BxY4XGcr5mUratoO6eKmKJ3ma0obHnCaFVk9Rvzii28Lpb 1XPJ53QAg4KWD4A3M8d2K5AQnhOoGbqfBzUMZYF38N1bKn1MKaJPAyy/cPZ4jG2bJSy+tYzE 77YiMrFhzJ6sBgPDyM6xdhp9O0/ubYujd92pOhPBw9Eyder3yMxKknv39ixoEz74x3Qq5fBQ psFP2DBDLFnE516Pf8n7saSdiytvw2SRaecDEnyCCklx4l3psWCBX5BYVFDaaihXSYDIJSmi TfeGRmj3ljw8WJPVjdvtuvTPu9PZb7QbPND9YLv72mcRUXEF2XsI5Z4JaE+KUiavQe2Vr9+n H312LRaYrvRWl1nvfdVBF1Qb4KEMWQSRRm18OFptrtOQ/GDN9tZYQNIGFcPuoAa7w9XB4NvZ KAP7nYA9y2fxK+8p8dy7vhcSOEBplsauWAG/QpKKxxTVpW1z2j2dH+yXuZN0932whlG6AhfX X8HeyYXxbDKD59ANUYQ7viSJ64GNi9NJ7PgHLfp87YrKPHgSi8vS+/KoXsLqbAm8jMAPI9Ug pCki3ikp3iUPuzNkg38enofpgzVN95YzAv5gMaO97z4RDtG//RzUEwY44Gml/Vqkd9buUKGj jEi2Ku1HTuXMZ97Dzl/FXvY2F7yfzwKweUhSW3NCmB4R005GxNVXNIPBkGSE0tUGXRi3LLMG TUQPIEV/7Umk2UiR8MoiVkXj7vn58PS1AeIJVkW1u8O7f26qbWWEhALmjvrMebYYWyo8UPGC sAOsr5+EcaAeZa6n/36c2n9CJClzviJ3Ebi+1fdv8xBaJoM90AyEgKZkqKXlUrkttyCbBRM8 C4dFuwvp+/k0fN8X0RkzlsL3jUa/fz+d9t9YdT3WCmqWUP5nhYIiV9Wd7KYC/8FSV19M7h++ vMXKb3d42t9PgFUdfsN7Pxf0/fvZQCMWil9BJTz8+ZJDNdavtzrDhhY4PO5rRaeDXZEvEeRR wX99MngujTQktV8keId0NZYpe+kIsbP5R5edde1zDPt1jI8P57/eyqe3FHU4dmyEI2NJFxdO SoVfhGOxWYrr2eUQaq4vu0X78XpYWTIoXfyXIsTm8b3AnzHE9FesBlef9WzLG8VNKNl2SQcf ILtITYQuskUvJamR0uThUfMNxofF0OWRm7KWui5q/3kHwXv38LB/sFOffKncW9eDCSgjZvhx oc/ZQfiHd31kbPoqs1iYJn4iFGxBtEQSvMM8wFpa5+N+rTNAVdVmgKBOtQIYigdAjyFZjWAj t9MaEkHUmo1dYWtfnVLM7i/mm81rsxYdWUBK7N/bJQ1JWn+lkCUp0eG/ZdEpapORsShkCRLI R3lCfUusbD25mk0hJ6MB8cQmBNX4aQ01aYBZTNY8CxqQ2Wx+z+JEhERIdBAMW2fDg/aG9dX7 6eVrE8YSKzQjswrqWmx4+LC+mwDWha+9URtxMS9hhvPwG7CH/tr4Re6W1y0YQxieWAYU1HR/ hxgC/tu/6t6iqqiZLsQg0xWH853vMCDHHp4Dtpzwh+ZjCYMlAc8oQxs75nolM3tCFjCiFlnl ye4Vvv9AG9tWz/THpEu+eF22MoqMjQGNx2WUQkT6CjFo2I9vxzMa2jQAxW7zkgjh3YEeIShx S4SUXpNF/b9u01zFCkjY4Gx0tPNIc9DS5H+q/88nORWTx+qiSDC9sWT+Qn3CT9zqMsbpm/+Y scukiHoZDQDKm9Te1NZLCR6/l5pYgohF9d8tmk99BSEW/7zN2LdmDc0iLVg0nqLal6RjX4Ug xXKbMxXu+8fGWX0/2ZYJnoCZ0S+sAI9/cyQ2UYgxYPHyGv41FPcFJaSG6TaMWsnoDw/QbA4X 5jXwJF6f1wzCHzos0ZO+/uZq7AMm57Ok3N5j7X9uVINChw+ZV5rDY90fBa+pycJvoDafSL8c 744PXm3GNYGhYf71d1TeBeOYrQeMs7VgwxNDhPbyyOaeNKI6qCW0f5bBNt19eEIi8IhO46eC 0h4Aqr8F8zTngPFCjYYdUgRtyCVMpQzpwiUZeTXAcfD/UfYk243juv5Klt3n3HotydbgRS9k SbbZ0RRRtpXa6KSr8m7V6dRwKul7u/7+ESQlcQCVvEUNBsBRIAmAAKiubG1a5uPCNqIyFZw2 HVjU6Ka8eIEm2qR5GITDmLcNvgLyc1XdA0fiN9WntO5RBbUnh0p8HaUxDmTyk4/ZmjK62wR0 6ynmDi4YjpQq65edrmVDzx0Eu3eQzEX5dKd2JGWz/OY23axh4g8THZUorTanu8QL0lIpS2gZ 7DxvY0K43rv4t8qp7BmO6b+Y1V9S7E9+HCs68wTnje+8Qa31VGXRJsRuAHPqR4kiobdsTben s2b1pnjAbH4dB54QAa6YTS+K6frWii2VNNIziOaHQmHHLODbh9Qyi6IF24R16go4+3bBVotk FWCROAxlJklRpUOUxCHSK0mw22RDpETbCijJ+zHZndqCKlK9xBWF73lbde0YnZ9HuI+Z5K1v KgJmXIUqwJEt/rPIQKaEvv7z8HxDvj6//Pj7C8+28fzp4QdTk1/AdgtN3jyBQPCRLdjP3+G/ elzs/7s0ttb5zdLC9cLTivZpq6wFpitf7/QseOz3LOFCeHzTLWH1swhXZCctnJ4pRuMF858B n3XWdgbJeDJddQBM19PB9Nhb1kW6T+t0TDHfMEjYpPpCXNq0Jpp8JkH8jgw7fyR66tVki1K3 0HljgQOU5NoyYj+tgwqChCYriLUueARR1Sgic5cSUH57NesYUC0UvIxIcLU0IGsWsc+/MCb4 6183Lw/fH/91k+XvGFf/qiSclAci1ewq2akTUGzpz8gjWkQXctVuzjuztmECJuMODHWPu8Zy krI5Hg2va52AJxLg9674rPfT0ng2ZpxCyDOfY31WKaTytOeew0uyZ/8gCJEi0egZg3MvROq4 lhZUXSuaQ3UEcwjW7Fx5NhrX1Ocnk2VOY5enmTECBoWUIFcbXFQIbVqeU3XPxLh7OalT9dhO pdNKnadqujEKGMOJC0CQiqs+ah6FMpXPvoEQUtiEMBGX0XBfd71pU6zkrbZImo1M8Yz67+eX Twz79R09HG6+Prww1ejm85T7QGEp3sBJtadwELihQc4g7rVekgy2Sr0DUGjeV1E+4RSkwmxX HJUVF81biQMtB10dfdd05A5jG+iSuBdQPjwAGSTzo2AwBphyVyQ+cp2ekjLY6h+ATeG8YbHZ /GBO84e/n1++fbnhuSiUKV527pwdGUamCrXJO0irYXZj0KQNAO0row6hpZDm3bevTz/NrqmB iqxwVuXR1jPiJviXbgkZDFhNk3jra7chHA7XhtjRI8Qyy/uMgxEOUfHde0gq9PtP3RXpfx+e nv58+PDXzW83T4//fviAWA14aTMfbmVEk8IWX+k2eJGVMC96V4ocRgEOACl64ZPzQ85TW+QQ 34bYRNsw0mCLDvdFa56HHuAy5Z4HMSE9m0abV9yS3avRHgtObWglaJNXciCK6jERC6sFRMMx lbmDtM23mq3JoBPZAMCBxqTaE7DtEM3pN+dRL5TQHvzAeP5evb+QgbQjrSO9JiPgUbwuJK3T lp4aTEhg2P5E+KX5hUB8OeFXKlrVjolnKG7AE9Fl6liKPTXqKFDzLlTOneHUwhWBQ8IoD0yE V/C+6BqDeOYu13zwjGt4dfmZ9ubcc+88nPxQprfFvdZ/uN/qMdB089U1TX+CjFGUaJLZQngo MMcm+JDcn1arGxLX8s9gTvkcge6YNx6BPtckbROZlv6oZ7oAEf4mGuzATkiizTpAWy5W2I2B tWPPV4MwvahJrM4UizwnRVHc+Jvd9uaXw+cfj1f251dFDF+Kk64Ahzf0O09IJsDQe1RWW21G sdxohqaxZZuKDZnVSjGAr9//fnHqD6Ruz2rOM/jJNvRcNWJw2OEAhsJy8q7UcCKi9rZCYzgF SZVCqPmt8JKYPZCeIBvMfFo/G91i8s+ZFuDd+xOHs8+cngcnlmZdUdTj8LvvBdt1mvvf4yjR Sf5o7pGmi4vwNjaA1nxbF+TGlLGVum+Y8IOyi9JH54Sy7lEzRfoEG9nBwNYiUnah2CiH9ALN M3VJKHBcl54JsmaP7qozwfEQKAt3AXekRUcAiBFNCriQsBO2LKqmR+rlqSbTrEfGSJmOfSW1 5qI8I/tKTbG1VDcpBHZHBWoMNpilbaa6QhrYBmsRPA7LUr/DW/oKiUeaDk9KqVPtXblYFjKI G3f4MC8TcCU5+7FO9P5U1Kfz6vdOaej5PjJeWFaQVgAb7oGSNHJk4ORMz3OTOXIqCoLmnJ3E ml5bWXjKg64iW+PU4SBh8VqCHgBGKyyGiqMOnuL9MkG4Q21jVBzk0rRm0qszJyGBCdlomoGE bdFRSyT2wQQqDKfd6/Tw46NI0fdbc2NaPvgQFqXMvgsyKPjPkSTeVgmQEED2tzT7amCmGbXU Ii7JHoF26dUESXMkEBudYCAQxawCkMTMrjptZYOKjR7gTckGyeRXbF+S4zrXW4JVCbf+Ovxs sMQxrQojP6+EMFUwDBPN3XvClPgXn/FFdfa9W+xqZCY5VInnqyYZjAdmOQWTJsTx9unhx8OH FwifMu+KejUr0UXPiN8w/i+5e39NRbYN7FL00k+US0Wnqw1jdAsYMpzkmspzrsmwS8a2v1cM d/LVERdQPg0ShEqi3JJHRIEKaybTkl6FPz4/PNnasnCqFze5mZYcRyASyANsMJ0Eqyn53X7D agHjqlVF+VEYeilkEyVuA6pCf4DjFLPDa+1pRhwFUQxp5xpV9too6m48cx/6LYbtII9cVcwk aBvFwDTZ3KGuqoQpbSF1yQVqe6Vb+VVLwqWj8Gno+iBJBtcnaXDhWSVhe4+fqMFpKrLqozCO cdwcjotiQSio1aA7vU019kRrkOQ4QuQiQFH7rIqD2LeQEJ6xeD+J2/lvX99BGTYZfC3xuwn7 9kOUT6s92Lg81dpjoezNYiKB+2AcqpQxv5rAtznuTaYRse0vXWEoEXRtts+hK+1n7NPEvo/Z dSWF5ZSqw8WiUWMDMLy17qxUExKOm5gXpHvXg3ZKcL4yOzohlk3AN7t6YgocsUfAwUuxAMe7 J1cSTF1e+8QnuuIdOn0r/VWWBejkSZLpYQ8S/AfFTLgTx9DKmkLurADrG6lsxk29cFd96RPD L19DvF4BbG82I5IDudhjF2Dn1DBdqSd3SF8EAuuL9XmzrB4c12oThR8RGg+4O/+0FEi1L7o8 XRu4jHGzRjHFvjk3JSHJ/tGnR+BhbAPSKd4yblnEPN9MMvAHeY2mGiiTf1YPSunu0dLRMQKd 4HUmqpj4rJHam+ZEYc9nZ59wIPyzPYLHq//uW93rWkyll0jwsy5btKkF5ewnJyH1oSwGx9wY FG/5uuwXE7XAZk+ObP8o8UdNJH9DuHGGbAq07TDj9lys2lhqEcz7pdifLZ4xtoCrfcgy2Mou zJbWKguScl8wGXwEw627XThB0O80IfizFC4mmInQDzBHrWjyvsmUWd+Vk9e3Wb9yo4258DXv m0q7dq7PJRcoEOLTZYoet4bKE8eeFUmO1TC944TAxCs1v88euSKj5vylFutnW5HpVUnFUApQ eKYhL7ImLwwET0eSGy4PAsM9Z1wXHKJW/tKasO4d0szsiurkIgDsLDFosCTponnIC2ekJFPx txkd95W2ZqTCABhOwtDYR2yZ2Mu2epUMqWXfr1XCUHt7+OqbMdeRqdC5IyNR2rYQp27HAogL 45sPbuUdvGMgbHpU/Vnh3r5K63EL18YIdKvrsVkXbAd06TjbV+6PCsjTiRu20ut6ZoaL6Ye8 zFdbYGzGuPnIn9QTb4ct/NRn7I+ak5ADCDWEOwlVv8xESIJszLoQf9dHJbIilxAadjSQumg0 s7GKr8+XBn9nAaiEymMUnap09i/rMJsnYC49uKh0zXCPDZz2m837NuCGVLRyJgiU966UCLZd abZdcn4f++7MjrPlxZP5Ioa1Zt93BZo7n3jXIcAfMViKjPyuhr/2o24b8EF5dC9uawY0vNeg O58r2Oo8TPpu9ffTy+fvT4//sHFCx3mUJdZ7JrXshTGR1V2WBdPe1Q8pq+UU7lYZWrRtgMs+ 2268yEa0WboLt74L8Q+CIDWcezaCzbPZ4bxQSqz0uiqHrC1z1Va5Om96KzJHDljtHG3QShyS M/ukT//+9uPzy6cvz8Y3KI+NyJurtQDgNkNPkBmbqn6hRhtzu7MFFvKBLFwgd+wb1k8G//Tt +WU18ZVolPjhJjRnnIOjjZNvOX7YuEZS5TH3otHLVHni+767TnC2QWVq/nXIEJ7ywKyUJB7q 1w8omp1McnCjwsIF+ZbIb+qUmwEOvJCcpGw9nHVOpYSG4S7UiRkw0q9dJHQX4YoioC8Eu3eR GLZnTtsVfxQF/YbwNJe2qfF3h2/+hFwxMrj9ly+MGZ5+3jx++fPx48fHjze/Sap3376+g6j3 X7UraP6Fe9wRhiO5SKLPSNrvfBsCjy3yhzfY0mIHZt2nxpJPh4Gk+jQy3TdINqEFZEJO12R6 cQDfNnVqQEU6TB2YQTZXLmab24sIVnWMNS/gCSGe60o/yg0kH6gTO9svf5pb20LicEjnZCsq G+CLY+D1euNFVVwMZhYpNEOzDytnAYRGlql+GS7gmiwNq6066tMNNr2y1fJMcXDTbobB/AR/ vN/GCS75APq2qFpHhm1Al20WYNcP/FyQKSv1E7CPQtQgJ5BxFPh6r6tLtB1UMw0HDtSsWMry jpobYCCrjMO0z1HX0trBslV3TU5SMe5v9a/R1kbn2yE1O8JAgosd9YrIJvUaZ4ZKE6IC7ggx vnx3uzFECrrJAvBgNfpBT9Kz2fnBKal61O+MI1vtsWmA9ObvahMctla7HBy7qj3XEdMCg6vB +Ez/uTszZctYIdwOPu7bqtXhdu5TFToezO8951lxdOtaWWKGTEzs4sI5L7MKKzsT0O4G43NB vuhJ+oFX+358fXiCA+c3IW88fHz4/oLnuea9ShvKtHdbxWxePgnhTNajnFv6OaeKd+q+3kHF GeQMr82MDoochcpMOlecjRMD2dLlccYDuRBiHtoGwb3mQQDetvL4MPZ/HszFRD/n8cMddc9a 0kJVdZmJN8p6y/KaAkQms9JcN68KAjOLXTJHyYqAMsRQJ8dJRVvsEJVpBRWqCvLaV+J1uBRV Gk/q8cJ+aAqWcEShxHCkX8BPnyF+TXmsAMKBTvotc9siscR9ywp/+/CXKVMX/EGFm/Z0X5I9 f6KuLvpr091CtiNuCaB9WkEKKHiM4fnx8YbxNFsQH3lmNbZKeK3P/6PG29mNTd2dVCM1Po4/ EScR47Frzq2aqJ/UlernqNCDWnQ411mvv+QGNbH/4U1oCMF/S5eWCZSdSYc28HYoP8wkTBBk MgbuijITVfgBP+H3lZ84RISJJE8TcDQ4t+iT5jPRzosUN5sJPl2f/zQRVdYGG+olemSjidV4 S+KmNO8rvYE3xFST6Qwf/NAbsPlmp9QB1yYmCnljv0rT3SZeuErRZEWJuuHPI5+TylM9Zclc wxVlGBo63q6eCeLXCHb4SwcTJwntxOqPNKQetygbS+T6pExU0TqrggLjOy4HNaINFnGsUMi7 QaxwtPGT1xqINkHyWgNhYs8UR0SBs+XoLS2/QsSVOZfuMRFl98eaaW1id7OqQH2cFmQ74nxZ 02DU9ku1iKOplG7idabcFx2Tq8b9cZutrZp9et93qZZtfhrrqei6+wsprsjmdF8PPHbeLsbz +KBdLnNI03HreN9k6k/XDLgheO5XWtdNDRXZ/cqKPIV3VG5tVF7UTHbVnuidUEV5ewLfDajS Gk9RVaSn+3N3tAuK2EHZFZuj2I5lDNeg+APWb4cPBaAHUpQ5NpdlcSW8T2tb+bnuCC0cn6kn R1fLUmm0y4COhgGDcMDGD5gYk/rnHVt9qGtmk/Yu8aKtA5EgCNLebT1/h80TEZWt9IFTxFv0 +7V3keevbVhsAEkQRMgZzRBR5OGIXeRhzVV5tYv8tQ0YCg/xFjn0oVY/ciDCDdocoOL1g4PT 7NamT1BE2NwL1Nr03WV06yEf9C4/BAPGgFy35/I6yOpYo4KC7gXF2urIYj9BPhCDB4mHCEBZ wuhxCSiv2Ldeayuvkm2I1JkPYYh0oUr8EGURYDfHhZxCskFzsixyZUrBB4xMqnP3+PXx+eH5 5vvnrx9efjyh70JNUhqTyima0G9u/jS2aso+He44ACFxH9MJHFgoZxgPVVSXpHG82yHzuGBR CUspvDZfM1mM7jBLLW+qZBd667WE+IWE3Zt1aWapEL80sene2O4uWtuhFLJXxhm9tT30TRCL ClvKCzZexabrXd2+5cNuUpTHuvfp+jgZwZsGuI1f6eS6nrDQva21zXpj65rzQpe9aU1sC3+9 uRS7UrPJ9r79lbv3tbNyeooDD7szNIki5/7BsevGBknGmnq9pThwbHKA2yAn5YQLYzcucWyN HIfILhK3SR2LhvfTySAcuyYxCKJBf2jGcQTZTYgro/UTEKz4ryi7jCbaovciM0WrvZKkQJko sEtwEU4a8oN1jpBUr/CNtP5v1yU0SfWWuk5sWb9OVbV+iF05LHrDSBqeBMDmDuUuwap8vlEo 8zXumMmYNo6uupmAlvn6EahWtb47LpQDDd5GWeYR+iidTeej+49CEKwLdGrntO8nX7H++Pmh f/wLkd5kPQVkuIP0wrYu4gCOmKgF8KrRLpxVVJt2uhfZggxib/0M5Beca/swJ9hhDSf+Btnd AB7Ert74a0dg1UdxhFYZCQEQge8cTbFOrzeV+JGjaOLH6xPClBF0CwbMqsjECUJH0dB/RR/s o80u1knmB50djGjpH012qtNj2iHaKrjDISYGpibGpY98FY7AzrcLoQzSExvTV+0ljj3kbCvu zqQk+46clZs0UEm00DkJ4Pl8IU+KTPkb+nPQTnMwFBnu/SbzcRm1kO5Of45VXG8g5flL4QYs 0xI+zKDx4htQ6zEADjWf4uLAKh3ijbf4+YksyV8evn9//HjDraOIfshLxuxAtfIM6iROJx6B rfJWuzwWUG7idpYRBnCKzXh/0lU2MWhWYg+GzRaecMWDajjh5Mnjahnww5FKJyC96cnfx2xc JkZ3VTnFyBm15VfjiS8OLUjmin4QeC0gS4AGND8Vxx16+EcLSVRZR3UY0tCdGSjAweCP42rp VF5zfYGBE45Rb9kcSXbJDDrrTmyC8mcMdNpqn0Q0HqxJqNqMVYGJfgI9edsYpQb8/koicYlU xNDDrTL2sQyywclp3M/BWLp5anWRplUa5gHbz5r92VWXGcMmgY05e7Ru6ZiB76vVzArPsS1x HK6qaDjtXZmeq5+DrZcLELSf4CeSoKDbBL15E1jpdmKMzI4u5mD7xBDgIQlDg5RnGxzp3gQL PxaT34YSu2+dNrzxkJ00/2D3fjv7U3Lo4z/fH75+1CQ9UWfehmGSGH1L89pcYUd42dpciGL3 9zBoYE4kd6Xe2AOWcGe67IXIcYMlCQ5JGONanPi8LcmCxF+pgrHHzry5VRxWjGkUx90ht6fX OI9gglFlXqA78l7z/xQHQh77iR9ac8Xh6J2oOBC6e9rzUDn9/U1xLKQ7L8QVG47/I63fj33v eFsRKFbcGOXGmsQhau+TbJEXnTlS4BUmQXvWULss7MME10DFLlEGSbbanz7bhMnOuXX3LWUN J5HRIw4O/MTqEUck0Xp9Oz8w67urBquRa5VsfHstXK37k2Wl26w2vxL9GguueK4LtuqTlROu HPYHU+oDWGAB2cF8MoBtZkPIyJ8Q9iMbUwhUsDXmq8vZmS0nTHnbGpuQy+cfL38/PJnCpzYh xyM7qlItIaoYQpPdnlvV1ITWNpW5wsHPG/Xf/fez9M2rHp5ftCavvnRG41ni1KNzweQ02Ko5 65Uy6ttFagH/qklsC8rhk7AQ0KOWvRvpuzom+vTwn0d9ONJX8FSo8t0Mp+LFDRMMQ/RCFyJR 9ysDxR/+hLSG+KgWUn+jza1SR+RABI4SiRc6Smw8F8J3jG3j6tVmw3bszFXKOSOhh61VlSJW rzd0hKOTSeFtDW5ScD6uw+sMoqj/EGrKH2BBPUk4lp7btlRtggrUfDegzVOBV1arVDPSPBv3 ad9Dnv2Znp0pyS4I5zLLqPiuOwIrnXFVTlLwkkjf+UPWolotzztk2+z4Ue85LqpkJ5le3ye7 bYgJ7xNJdg08/eyfMPAF0ZtjlSDRbn40zHrXOAluz5xIyuLI1MILfipPRGv+exMN3eMq0DSV FH07aMoITPdKrO5U5f4uiAc9NMNAmQGaDqpTfqdWMnWJyU++4zJ9nkE3ycwj4G6Krd+ZQTjB Mjzx2+R/gCbJeDgX5XhMz8fCng+2CvxYRCrjmMCBCXTBZOo5k7AZd28wO+NEwheemh7w/xi7 kiW3cWX7K7V6u/uCgzjoRvSCIimJXZxMUCqVN4xqu7rbcW1Xh4e4r//+IQEOAHFA9cKD8iQT M5AAEpkTQJqhF2F6HKPULIvYkpLoCcrb7Eli74eBi+jpzg29Eo1bKvUuiNA1xtz4wpV3M/KG QWimMGuyOAWOWe7Wtdrb40uKmaf1Qst10cQiTVqqA3Y0OXHxzr5zA9QRNY69YxaUAC8ArUlA 5Afwi4AnhmqGoBjaQqgc+xjnIwhvUCovvr+LNitgVPNRo0+jQQws6jneXn0bPMNNmR0LdjaR rg8c30fduuv55I83YXPeUy/y8Uy9DHfBBXX2ScwlZa7jeKDasv1+H+xQtT0VZYqPY89PFX5t Tzpgoo2qkURu2fuCHJ+imXxiyqucp1yTK8LRP4X0GD5UTA0GMbE36PHxBJJrbnKgOpD7doay lOXC6z1vOYrjkre8wNAFMeI/JkUn4rTm9yST40vptHZDtCES4HMWUYrEcEjqk/jrTkJLjtSb g+uxy98pLWg0zUU6rDQhOrVfOhYd3s5iljdF1Q0S46oy03z0Fd65qDJe9AjAbskudVwgjhGf XjCYOaFDUguV90cfZLHoHp+aJjORrJk2Q3r2E07gmutW/uVjjk0Wui0F+OiL+8frZ3qr8+2L 5o9zeXBd1L2/4/qGyTNr8dt8i2NUlJSQc/j29vLxw9sXkMg0L8r7DVRJdC1Ss40mJAbWaZ+O WbKma4kmZs1eXwysScFIKBTanGN67+pvZJjwnSmMyAHoPF0SBZ6WjjWgGSwne/ny/efXP7Za 2MaCNlNLPQsJ736+fOZVvNG2i42t+LzS7ooXsM+rdkjKZB3GZ8yiNR11NuiyzZHyeObDjQ1V euEza73RQoqPpBXFeOM4A3XzlDw3F+wKZeaSzqKEs5Yhr2kxQncfM3vT5rV4fscFL2HiZni6 wxUt8fTy48OfH9/+eGi/vf749OX17eePh9Mbr6Ovb/qR3/x52+WjbFoEjMljFmgLds+aY7/U 1aLkZPsgulWXI6hHccbsgY/k4TP0TiXmQH+GQH2Ns6QpVZ6ZGuQqr4+ee6hS1NJZwguVaaEx xk3/Rg5GV34o+++LoqODEvT1zCQ4WLuVxHScDcozLiQ+edlCWUhYtfdCZ0s6PWHsOJfjqPIX CRxmSbXHlbAMQXFluNtKaLyyBqU49rzayVEtKsL4lH6zFzzBrOft3r9tNh7NvDDRtr7tHCfe 7nrCtwZMmSstXV/cafg66EMXJ6FqMTcsZ2SYXKzBmusr8khx43lJt5OR159b6fQs8tRklhGV 3ELfhvCdrYdblat7Hg02kBSHokvZiqE4D04+YV1QGs2NXBRKVqXgdJO/WRzhw8CUJ1allTTp j/h0Oxy2K1Hy3WHJiqTPHzf71eQQBUxRo9UCyPj4nmI9f03k7n2CK3u0esHdhwwO3K28zhaF IEN95rr7GyiEWK3ND1rx8AgA0306nuDKoopcx7X0JZYG1AEzJfxBEfqOk7PDitqnDaBc8zpr 5OHzKtK3vPG0JDveSekCubq6E0NVb6LxtexakqYGk/XQFkPk+LF1NJ0o/p82mKqWqsUxOjq5 ggkdiyC+dA6J566zf6lK2EOmG8h//fby/fXjolKkL98+qmH00qJN0RTKk2mh5yLGm65tGCsO mntZdtB+UC9rKp3E5YnAovDrCV1JyYpm/c0yQBQGS0ali0aSLZxe26TobNuydPs03vgJKBCR tZ4n44SKG1aUCY0Db7VGnKkmaoK8ZB4DVaF6dJAZPpYJOxsZYIJsS77GH03VUiXpkFboJEpj M2tPixkmvOr9/vPrB3JvMUX7MHY21TEz9gNE27jCIViGSDm1SZYaXzI/stzDTzA2ARaeRqQh iSEz6b04kvG3LTkSjswubOWJWSLkwJ+8MKcwIP3Ccy7TTDGvI4DXa7B39BsXQacNgls9IbeQ QuDqhmOhrUMRiRYY3eNgN5PEsTYDXmiD5r5LSJtNg/VEiAydGcxojD/a4+ueBUftKRu7SHWT bGpk2ur42IqJPhr3V/gea2YI9DKPHkP+NkWF6DJnBFdPSolKZmyPB3/v28ss39vIR6MW2Seu G5HvGTac2KpHVanr3243SNTdlwhA3IWsaDeeeLeK8yYBL+D6bWIJaEEs5yLc8aXP8hB45AiC m/GY+Mw171a0J/iOQJ71tlQ8epDeWqjBJYnAVEsZ4RVBnEqtE9ORIT33T7bsSta2MoZ98Y6F Hro8IFDYgaVVk6lnvARIZWhdsXHMdTpoVbmgAfwohPegcvTKC7l1vqfNhv2z6QbOoKov1xbq 3jf6CdHjnW1gyBvOyJBF9gaAuEec+9goVx/68F5/AvdmVUxnHJav6v6Wr8YL7a50ynSlq5ha jJQxVOKaqi+sQkQVa0/vxQo4v7jX059tuFTidFWm0qTpny6UPP4YFTdur20rcZ7CBZwVuyi8 ba2YrOBdPZdjZb2ETAc1K2oVOK5eDEEyHOML5PE55h0c21okh5uMOWIJtioE8E3/Bipd/XWp bUmfDawVGt96JZXv8+mtZymYQMvW31uHxXiPvxZYVpd10dukrKBHALqPdR39klhaaLpoZEgo WvU8xaRTS1XS4TXzDHuuMciIHu8sZsdTGXnRfdtENuJBGOhdQ7ExXVPj8IayEexhNSiwB4Rx KtKpOManbMslc/9U7hx/owNyhtDZbWqcT6XrRf4q2KToKJUf+L5RwK1IM4JBWvKuGlsa1mq0 lf29SHJ+QKZxTobXiAj1UNLmPPySXRS5ClzHpuwR6Bqqu7D2RQYIM2hMeJy6sy62o1Hx3yZt 7Rd+Qig+mlWXlMbIxtzVP+1iGJdLTMjNuZJW6ua+YMK4BmubsZfPvdXYGJHx6sHMVOV7fKiJ oAa2SU/wCA62mqjlGdg6v3ZPdXJblHqhY7MpE/rSfB+1lkzuVoeEZnnoBXa6LRiHj+4M3rZt Xc4IT3Rv32gWijNR7oNRmjPHsbhRlMCm7JNTjoVQwJSLDMnDLrjGF2YyPhC2BzO7eqA5cXGN 8CSnPgOi/XYcajqkAmaBD50GKSw1/6fFJZkGfJk1eDY0WXlXoZPCe9w2O7+FRdk/m9j8AARD 6vBYQTaBYOgs8LjL3szvuLcEws0dpoa53r265UweXN9WLC5K/ZjUgR8EAU5foDbPmwvb2t4Q sMjd32Ym5RbyGqrvhRe0YCXfO1s6MgdDL3JhEOOZiS+foQ/bFzyTVkCuu0UuypJAPIzEkYeT Io0G9gND19EhVUNUELm426AwCnHDblht6kxBbJdg206umfTDEA2Nw93+ngTduZsO0XYSVNi0 qbRBgWW8jfvOuzmSyoWluKpatcb2viVPfN/seNZq4qiH32YqbKnrR5Y3XzpXDM/VVJ7W5Y3m way2wc7FBWzjONhbisAx+PZLZXkX7T0Hpsk38Xj2EghuZo54viU3PXk+3c4NZ4mtmdlHWHB7 KOD2TOFIk/1ON3NWQauRuMJ0jG8OzFl7vLzPXTx7tlc+i4f4M4Ji+1d7W26f0A55wcVFcddW Z1xXs3XTfSEXdhiu0gu6waC6GOibS3pmaZfTPVzfF/Uzzjl4HWnyiBMTUF2kS+MSdf0utnhf UZnoyGY76b664oHAvKpNHLgWEcRcF+eMBVUchdvTmrSchqmWJ747cyyTuNwZHJrG4lJ+zXnt 8uPhcoQJCYb2qYMFNPcZKij2VcO1qvARtcL6HLtOuK0pcJ7Y20F9WkBRjaC+ZYEb+nDanA9o LJjn48Epz148uGoopzignNNpzp3qEGyuv70goCMeA92eUJXjGYzJMxggfrKg2BR/Ja8ySPb8 VhghtEO3T05lcigOyPFUl66iAXUUMUHbJJVFB/cD6Rj4slMms6Ib6nwGtOsKMVdNCGxJwRIi loXh16sqfaGzpn62JMuS+rm5lzBZ37f3mKqU7r2y7RzeqlmOYl7C9fqqqSHQpVWFsi4q+Fqk OX4hJ6yLhjRPJ3uVDS7AIe6/T99e/vrz04fvZgS+5KT4feA/hmKne+Yk2rkd3t+Qj8XrKaGA GIuEkSBC0J5avvy5c9BVeh9QtJerbxzRZ50ZZIXshpfQnYvtukIW9OO3ly+vD7/9/P3312+j Yatyo388DGmVlUWtdHxOq5u+OD6rJDU7x6KrRIArXqXImpcLyLJUEyjsf685SxSbIiUL/M+x KMsuT00gbdpnnlhiAEWVnPJDWeifsGeGZREAZRGgylrKyXPFW6I41UNe896DjCymFBvV2IMq ID9yBSbPBvV6iJh5ByB3WF8UWpXQ5WKuC6AnuWVxOuuFIL4xrqHOTgGFKP9cQZqNOrSm/3OK lmNYdVB1Fl130eJYcWJb4esY4h/9LNlw3pVxXaXPXK/zHD20vEqnnoM/1QJ6i35R911TrgQl rCh5S+E5QOSM9VbwdEDH7VQV187Tqpvs1I3YX9S8bibu5i1FWEdhpaEm4hFi/q64JqvyEcly wjqhk2GP8dncpfDHRaQ+jRX9UnfOMJMoEneZ1+Tn7W8APrO+eHfJEXZCRM2OQZGTXPNaA7ok W0XAnYkbdSJxPJ5GcPW8XjTVs+vF684liPfqkXOtssgpA4whMWKnm5nQvVSYv+56vn3ssOSa 6GFjZ+K64gBHkqYwPDFxFPo0xH8PvjG6BdXFjzw5jANm0tjIGz4vF3rveHzu9CnVz443gyAz bZJX1z6UetNkjeWsm+A+xr41adLtiiyvey17iQidoc+jls9TvlivV96RRq+gqiG/6g+tNDC9 sB6aqHEpXA0OnGBV0KeqH3hrdk2L9SjK6i1xQ6Tz0+euo08Pc1S/YbSEUyX1FXytLvrpugU4 ZXTbyJV1erOKb1mJkwwILLPXoeLjqN8Fq1wqb5JVSVmCHfyI7ijuclYfVDmflOqmsqwQ5CxP c6G30IT16Slbl3pCN8bfoWuSjJ3z3LpiSbMMS0UzvhapR6miAiP1WpxWMr7JAZSxQZC2JvH6 UvEf7Bff/JJxfaou0EccQknxD8wZWMFUx58awheI1AKds6qgYN2VatYxcuxmjlWbyCeJE2ir 9CURlv0Dpgx6ctRY+Kgejunj0AqD4kf1obeeXpnn7ZAcyWcRld10KSMDMPIPjoeH9uXr62cR 3C7/+uHtI+n/QPeT0kmd4dsurtgkfoj6w8TQH1sZ4dPK0Gauxxz1BHfm4b9r6TUiuxabuGic L6AaFpakTsrmNPTICnZmb5M6L0UPQsJGlKIJWmZSlU9ujUvm+NE1yp4cV72KvlvnylaUNsYF W12YjnLgfk2+Kn758J/Pn/7488fD/zzwGXe67jZ2rBzjCnoiBhXtmtWSE7YRbHbWOXQBf5u4 tIEWEz9AH/vMCzSjlgWTBi+bibdPigPhhbxcAAGx8gkTfl66cM0GIUCC3S+hxhPHoYNyJ6DI wbnbuAXQaib0nQRLECD2c6IwtTG+kNVY5LUj+HzTA8jEJMz3QPnLK6+8qGwRdshCV7URVWqt S29pXaOPRqMPmFaeqWPvzshQzl7IBYfSn/nei6uYcE89rg7yHfHb1+9vn/nW+dP3vz6//D1u oZWRN9clHe/w/7IGLsrZpaqeJ3xJSiPzf8tLVbNfYgfjXfPEfvECZTbj2iBfPY9HPvmCtOda ulMKZZJoTg2UYJySTTlkzaVWzD9ZrbhF5T+kjZFOatPKIAx5qUsRxCJP92pMQ6JnVZLXJ9KF DTksf7dMfAq9S54qvtXWib/yLqVLJgpXX9pLP0jn4HO1ENowRl5AQNtOuZVF1TP7XCdkmc5X +UbtYoTROSBX6zOuSHlaKaTiNXDtdUjaYp2Pa94dGsZL3xV1j7wAinTXBwEzcfoeTifElfbl wDcfRSb8nVjk85q+0NNmzaPc3ATUae0fDtQWfIOjbZ9UbC1TPmTCOxdZ94WhB52zfyU/P356 Uw9IZ5qa6Jn86XV5UpYNxSJ/n/8S7tbiqxRuU0Wem3RVCAqEOfqQ0LvqqjWIMcnge78Jrcg6 rjXlE5C+5xuZyHP31W0f+0FER4lnK2vXB+EuADxyMTdKMZOHVl3mdYgXzwYxlq5bUQNJrKXk Ol9WJaagvSvxpNqf6LFrFa+cREFxdEGkO3Y0pN2CfypMKEmZvdI0g38dLDxmjJqGpojHrqFh 3fTY+ErMGem5nYTwH7Y6nNlYmxXH/qZnRUe72zo30/vcMZ2NHipDuoLvxQN5yuPTuWB9iYOT c9bRYYHR/7KcFada3DSA6lLQNjXvR9hb+iAG+sPvb9+4Vv36+v3DC1/90vYyOwRK3758efuq sL79RYak38En/1a8gIzlPjKKItuBoU8IS4wpbIKqd1vVKcReeN+5WQSzwgJQQ2Io38pNkR4L 24o2C7AX9JZeO4zwUnjndb8T/am6ibUyU1/rqiCV/7L6kOiyi6zad1RGVo326X+r28Nvb/Ts GrQdCctZ7HsxqhaR1KkvAwdalmts9kpPxOBIusxeRtTGhM2738lf0VZn1vNP4+1chJ7rrIet xvbr+120c9Do1thmH1+c0cokc23x5DHh8pEe45uMpi35ur/V4yTzY55Xh+QZTpP943Do0yvL jHGfUF2pXSL58vntj08fHrjO+4P//qK5BhIzoXBgkRQo5IOC3+ji89iss6OgXZbZpriFq284 12oqXsCsoivHSnhN3GKiGuqOib65N9gKm+amcZGrJUtSQq+f+rAlHTECVn6g7IxFbZfEF8xN IZSP4dIXJUP5pdMnrnWVlxyhp9vdwpxcL+HNkwhBmxkZOWmUoulNMvX7yWfxdDV/v2dqSd3Y ON+Z3Z8gMD/pGust8eSqujHS6NTELICMcMsnFxs0x7Kx4DJqNKgaCYtA1Gq05QlmPRQ68g/s ANYgcfAzHvSCupJhijfnpskn4kY9cb2QXerTKnVJBFvQEUCLwwhJhQanMrAqexR3OKq1qo1J 2jutmaqk69/d+diydimCx6IZNdY3h7yrms66waOmbp7KZH0QIICi58ogXSGDtOvmyaQ2WdcU QFLS1fREzl7MpCtyBozC1nx8w0lOhCo31p1RbGgaU8RNjn439Qt23nEdAChqIhQRXNmtwkG2 myNcRk1GW8SkZcCZu2bWV58+fHt7/fz64ce3t6903iOMOB9oKnlR87peSaVEsvfk+ubWaBI8 eAjIz+c9CYSzI8sqrRb/eZalkvD5838/ff36+s2s/1VbCtclYkVYZUb4Wd0GxhsKo+Nd6sDR WWx1JVI360mQ0egVaSeZOM2YotOpK9BGscEgX0eXklVndFbTLSceE30x5Bl5wTGmSwmyLfCy gBZnphnvckq2gNI/ua5LGDhOmcAq3YSvKZoyhUM9c7s/Q1V6QEJHrM3mYpm1K7cwD//99OPP f1zTQu64h1hBv0aemw/5VRs+/7hNzU6CDHkNptFZ5PYxwsjEt0UUTA8rwQrf1P3NxPpje0ru JFZ4NPTIMUMxVb1U+0Bsxnm1KUs5aLcEP1XD+XKAZztJuo+GLeVSHgYmF6TjTpjrR54dWT/T 1nBbFFmdKXQtplQqW6T5UdcQ14Vb6gkbzk/3ZBOXZhI2o487V/UQoNB3AaYHAVCOOD10fZhL juyw1ePCEvi6Ab7JEAS4Dso0WNkSGTyHzLPYG80cPddpjW2oOGsYHUPd62Mp84PS96AIAW1n UfKgGNQ6R2DWvARCnPLOK+/UveAJjA5q4UPPH3QOe0aie1Ww8+7UwM4LYQXsvAgo9YLu2uh4 OBB2u4F+PwLWr3zXx1nwd66lRnz4onNhCPwSyrx5jvZmdl6G5PET0p9G1AsOM2zkiBhC525H J7bIsYsRdydbY01ergBtAC71o8kRLFLOItcHcxGnezvQ8HQ4iXbI86ElpOMmP/VV6MCWLeq6 GbpH3/G3ZrT5JfXAgPQque1jJwZ5ksge9IsRAQNEIH4QGRc+Mxg4WwNPsISR9eu9h6wb9NQj 35avyMc1PKMsA9tXiVrrIUQAG93CppltF7HiIv+5PXTuPnFz7dkNY9DXCIhi0M1HAJdZgHsw tkfAposQHId2u0eFz3dCmzsWlYuXCtwjTIg19+SdBn8XuN7/WQEsjw8iOC67kq/moM67nk/C Me4vhNFpF8aCEM0LRMfp0J0vpgegyYkeA91O0m1tOqI8xxtN1fWRA7q6INsKG7mwTJy88QWH 0sSOw9rg5PELUDgJSpnbxyn3L41GR2oJ/7s4FmiDM7laW1+ACcxyZMcqb+VHQ4VCx+YhU+Ha BXjaZH3iQ9eIKkOADippT5/ArVCfMC+weHvTeML7PFG4tR4IDqRxcUAPdasCkQvqXgAeFsV3 DWBx77n+sEP6Q39M9nG0h1VTXn3PSYrU8+9OkTPv/zN2Zc2N207+q7jylFRtNiJ1UQ95AA9J iHmZoGRqXlj+exSPKz6mbM9uZj/9ogEeOBqUX8aj/jXuBoijj7mHKrPbfH6DVVOF8eVtZME6 ZgQnU8dR4y2w/mNz4vtr6y1LYnI3O90PwLScEoNDTLw5tv8STspmWMlw/4564FEZfGSrIOho UfiFPiibYMsc0PH36Un1lIEBnc2ALC4lxWazoKOHZkDWU/tHYMC+KZwezPCO4nRclIT+Dt7p iF5Pj6CuRDUG9DQMyBp3cKex4BEKVZYA86SsMmCPOLfZZobt124ZCQLP0tgB6Iu4QNusStRr trrtXGNff+FEBSlROldBt6CA4GrJOgsYZMVo+FuFb7VCp2JODoFhP4ZwLLG1BYDAcwE+OuwS mvyqlGTF928EEWr5wsmHCPTsqsLFcLyAV82AW/WTHHXHgev6apeZWhFyd+F6S1dgHZD3sruK lHsEBZspoRYu9S5pbD+ncKKiXU3jMfJtXSX5rt5raEVux9+Hvfr6B2k75cq+QPb9fP949yQK tuybgZ8s6iTSbMAENaoO2HdTYGWp6mgL0gFURPWKhEl6TXOdL9qD7xqTRvkvzXeNIBcHfq52 VIEPL0lTI6OyKmJ6nZyYXo9I+DcwGxidyiphuHoP4Lybd0VeUYcmMLAkGWu3WJBJAaaJVCDQ k3zh9XNmuEuykFaYmYZAt2oEdUFJi4oWqqMgoB7pkaQxNfuTFywcBjlyvz4ZQ3pLUukJUcs6 uWVFbng0h5qcKpc6NMAUIj2ZfeEyZgTsLxJWmEoxYPUtzfckN7O7TnJG+WRxViKNjLjIgpjE ZkZpkhdHzEJTgMWOdvMFocKPUnnNGuhbzZUikKtDFqZJSWLfkCGNa7dZzHAZA/R2nyQpk5lr k2NHo4zLRaLXMuMjWhW5STz1UTQUapVI+TfHOaNwk15scatLwVGA/tWEkGeHtKZTkpjX1ByS oqqTa2eOJckhfh+fDK6pUyY1SU95Y6wXEFUpis02duR2iwdFVllQQ3SUM6L4O6DgSQn4a8jx 6Lcdx0mEyFVHTyFaIlBWlO9kdBojXBavTZpU3tGJEAAqpbnJWyck04WHk7gAJqBKYgCHvEwP zOzaCnV/JhYQ8GJGGFVunQaS1TqhwvNXcRJFqLsAhe5emWt6LMyK8ZWOJaiBnED3fGExmn6A 73BbsrmxalKaFbUx8RqaZ4VO+pJURVf9jtpTjLVCMJ9i2M7kTglifO0Dy9AD5r5JfJ/TLshx rxWC7ApklFh+rkb3KPAsLDcGqslxTy209+aR2u4K/k1u0I2YWZSZZ+fqRwleS9neqNxYpNCL 5QyQFC8OzUKqFmTxFdtKgFlejjLev1uR75+qYgCWZrCkQZoFXv2KfUQ7Ja/Ob4461MCBeGHq 0CzTvrrlbQX2QEmGRnXoULllHWWMM7dhWkTXCKm3wQqU+QT72gNxVaetExEdS4ZJyqI/WPwH JLnav75/gE3dx9vr05NmWz1kDcld7qUBY/FejR41kFpeI/BfwZi0F9MylBx4vKoRFxL8bNPL tN5meJZckElFGOrmSOcSayeWO4D1xsOaxKEE/ufA4tsoY06UlaRqlni1u/iak5WOcjaXQTmQ DES1TJdFCB9EtZ4sRShMYS2QLi/ssWjIce4YXg6hrvPHPCEUuLoeacWBacVk8j68Hl78Fv66 ghoNXBlNw4Sgmt+KKPMDS6TLSq+RrfeJpIJJhZQSrUAFRP2KCB4RFBMTS2ZQpX4U04kkjYoK G6aMWROmptusZdiXVEx5qStmDc4c9YsvyuFn2YKfqxla+7IyJhs4V7HjuHTA1KC51oxei0tv fhSujRANnHgEL3qxyyWnSMabf4CQ9oc8Tir3rEIfi0RF9/CHbvXaHKD+q6pIZ0YnQaxYo+I3 1rq6Zzc6oS7YnoZExO8zBqozfXOJWX2NjVLDD1Q5unxJJUx7hc5Wy4XZu8Ut9oKb8UN4TSPN sVBPsz8w8kt1fn59+8k+Hu//QeL49WkPOSPbBLyIHDLlZJxBFMnhGzoWySRtsjD3Z9EsXEyi TBX5HvlLnMDydh40aJOrJersOk9u4air3BTAL2mlqeYzUltX5EWFRRzlRGRa5cgLcFjBoShP wFvMbRvx0/ouifudAjiisPpdJCP5fOYvN8TIDVTVU5N268+8uVksGFaqT80jVb+iFfT6UFWU cSHMdetlnUv45MCX+xHHn+JGHFOk6dHVwreqBuSNj68PgkG6+3blKgJkqx6X5JgVIUnr9uYQ JlaB4Kd7iXrFFbDu2EJWEUI8LRDiEmlOuZw53ql6fNk0naWKs6ukdw6zQN3nyNiYpdn8jmrF 2BrAlSOWomDoQuPAefuAXxrKfFAn4QIaY60Y4hn7gaoyKttVz5cbU7z7oJ46tfODb3V6zpzD mSd1E9KdPSMiAh6W3c2r02i5wR9UZV2Q+Ac9YAYasKfJ8l9XvkXtz8x2Uzb3tunc2zRWaR1k vI0ai49UIX96fPnnV++3K372uqp24VXnJefHC/gnQk7JV7+OFwK/GctXCHcmmSl2ENLQFNss bbg4GESIfWOQZFi00YTLWiPWCNFfm9PS9sYtu6mcm52a7gZ9++3T3fs34a6pfn27/2Ys20Nn 1m+PDw/G4U4Wyr8BO8MtRYfLAxwNKT8KK3f4xPNO/NNBwIOm4gqmf8a4++fH96v7zlPL+/fz +f6bot/P9/zXB9WQQBJauJ0iqepqdkBOeb3ndclrRpB0A1rqej06XhZpiu26DbZDXNaVO5sw d9gZa1xxEtUpfg1qMSYN+p5ospWRq+UxL8pd4evkVKJKMxpXKvNAMbhEdmLltW55q6F1U1ZO UPhWUe9pHILTp65qsLpTvFADQW6LNNI+4rviE07sfer88vZxP/tFZeBgXahHd4VopBo6Glis jauG5ke+3bNWNo5cPb58nN/+vusdXytpaF5voeQtLmgDCx45WdSpOsoLn+fxphDKtLZyPTMJ w+WXRHfGOmJJ8QWNhDMwNMGswZKGVcT3uvjdfM8TM3DvOJE9MKjLpE4XEe1/IthKC3/U0fen LFiu5nZmtj+xHuGfw9XGYaCs8EC4n4lGIE7fNAgPdaZxrO3mDEF9rPb0UVVNMltGc6xjKEs9 f4Z2gIRQTQyDBalHw+lLu7gy2upaRxowW82xighsvsJtGjQmNP61xhEgZWcLr9YC62j0TtBs GXcGPhw4bub+NTbyfeCJibR9yFwkNeOHlc0MjRbScWwzYSNhSwGfrx7SUE5fqpo6Kr+PjGKS 8TPgGuE/cjomfZyuxSAZ6EEwm9v8bJkhxJgvF8GgMlFS98qmmsf9HPlhn2SviMjCxI9tU1LP Bcn3nO3fRMg0q5qVjBcqCiw7jwnTazNfy3wtbtdIXxpRdRRkOTUFYHkMlu2WZDQ9OXJYBbin a40FV5lSWNY+qjOmciyCJTavAAouJ0Y6OWb+YrZA6GacQ4W+QqdYssUd4w6yWF9765pMrt2L oMZGD+hz/HvAkeXU9zZj2crHGh7eLLTj6SB15TLSQjN1dBBTZHkY4tLY7Y38teNyYGCBC/1L K7QzlFjH8uWU32SlXbPONNAG+qjoYlq9vvwelYcLGx6WbfwV0njk1nuA6E7eoE02D3wmbeus JSnRndPaAw2vAVPjLF4LjvwnNj/gQnZ6JNCL+kG0hbcyW1aO1cLD6PAgVvE+myHfDcDA5RxW zU7FbbKmx5p/89FojX1TIPA58inQ78yHfjvaND4WJCbyJtYUKvnyZqfZ1vx/Mw8REgjTjuwT IhE0wwakmSAmUmkpbv8me4fzmNcj9pzKguYCi+UHwZbHZkpgONoekUWH5UeG9IV8xcL207W/ 9vBL2JEF4hhO1aVer3xkoWtA2pD1bz0Xyx+yfmeTX/iqjj1v02BJ5euxdbITKgZnfnx9m15/ Bn/+9upL06hodUvPmAuvHTpKFMih8LDtXf4plyynPIIIQopcHySv2hpJ4aN1TLpoSejAdGzu o27HwJJ0C+dO/ODaMe0TYoZu6M7/RluGu6ZDA37GU6LcP0V7Ukl9sI6wjxeLdTCzfOV3dLXR NON5sohScPyNKeHU3up6ruxHOZvqvKQUbtTlSwks0kzG09ZQESmqx375xah2G6ZtoesOqQiu PKRwWO89o14K+q583NIClJtvtsoTLBDVGgimvKC8AzEfcgKWz4wGpc1khDmTTPlX2SoAc9uu c2T4vQavfRuehM54RnLercoFLOht9651lYr02txj/oLCxyVHW7gvWN3Sok6VwFaCaPwUGSjl CBqLmLZrkFTYsbBOf6hNkx2JTtYUFk5/3l///rja//x+fvv9ePXw4/z+oalO9ZHiL7D2VdpV yUmLSsqnRRJT87cZr2KgbskhrVsxpekXCJL3pz9bBBNsGWlUzpnBmlHwf2sOUAeGhepfqyN2 11c6sSSVHsejozPGd2d5adEpI85Syyhd68cnBfBxcxmVAzMVUvC5tuSMQOBhHxwVX9nNBnKA 5pfN16iJR8cA9pm842nB923QG1bWkoHvQuYrgZu9NOCreZferAOfUQG6eVNx35YxEulBpQc6 P1dmmGnXyDALurqiiSeTBmoMYiVVoO5rR/pqgVW99gP1OKWQUYESwMQgCXyJNQcAbB+k4Kpb ip6c8V0NsWfPNl2qUXP6EQYtPVp4fhvYo88xSquiRYSSCu09f3YdITWPVg2clrBvUb8ilBE/ xNolxjeeH1qF5RypW+J7S3v4OqzAE2X6F8CAvBW2ARiZUhKWkUPw+eQjE6k5HBOkvzk9U5+4 RvIBIQu1jZs50sVs6Qi7PmRIMW/zVqkRHddIs65RKKeUptKlzUMEyAG7acEc3o3CkrRw4LLT I4aPm1AawzeYHdPNgQhDDl5O2aJ6+h1j4C9tCeTEJUpskeXxWv7VQmEiS+/UsostRzN7Kvb9 gnVYTVHhr4qDiKOJfVqxzhX0NmmIIxiXxtblrxoTsJrsqGqgUNVcSGfDXS3l68H7x93D48uD +TpN7u/PT+e31+fzR38b2+tu64jkfrl7en24+ni9+vr48Phx9wQvhjw7K+0Un5pTD//n8fev j2/nezh/6Hn2R5G4XkuHNkPndSTbyl2vxKUi5A303fe7e872cn92tm4odr1erNTX08uJ5YFR lM7/SJj9fPn4dn5/1DrOySOY8vPH/76+/SNa9vP/zm//dUWfv5+/ioIjtKrLzXyumjR8ModO ND64qPCU57eHn1dCDECAaKQWkKwD1UVaRxj8fAyy5MpKvsqe31+fQNvkomBd4hzsGBCJ7+so w9hpNupy/sgYz/0bAXn5+vb6+FUXa0ky04UFGLQOs2/HWnAhCCdRzXIhp+zEQBUdmeLduUGa yY4108gtKUefVgYDFFYVyqtND2hmsz1RBjK1MgE3QUqFR3JRghHXRLWl0SCStiKYlm6PHmlY CW0vJGVY0XiXxG25x7wEDx1TRXtNjRkU00VYJtBvRhI2NG1JQ5l0xj5G9qNJGkOGMmhPR91n oG8JBfH6qKc6CDvVIX0g4VTvAEhaVsWW5o7oi7xdfHDmq/UMbFpQNZGMcg4meMbByrYxOOhf +J7g0Lquu9vCPiF7Lh3JcAmgnsoEUrC2DjP1I2fe+PfeAWUEVIOYlnZSGYVE20ABAHHf08Rh FtgxKldxBkUenLfaV3TARDggbNsxcNRJmkAkTu3tLUvSlORFMxXZruAtbJvCW2vHBXYQTvTH bsUutSAMWZQqdoL8B5cymFagjPXTZIRIQnyRSLSdCMS81zMZaOOzkfyUPb0OOtvSTTxvUHX+ +/x2hlX+K/+cPLxo7640YriIQuasDLwZ+n39ZEF6dnsWY+uI0hpbtUIHN/Bsqe+helToXkzn zmeOpvWqQCxSHd5qgB5AS4Xoco66QzF4lp47A9cJVWFZLNzJ17iGjMIUZl4QOC4Kep4ojpL1 bIXKF2Abf4ljTERdVwNMKah4kkuThpUUTd0HusEbt0symmMmJwpPZ0uGZc78rGSqYxw1WUPh 7y7RLOQBuSkqeoOVybGUeTM/IHy6p/yQ7ai1eAqZrvTgEBGtG0SvxNpTNDlhjkKPEfZer06c rPS7zQWeQxivvcDxkqWOGG342p3h0ZlFz0Zga8201Q7MUvixWY/rPdDX+CVWD2+0iyMoQfgz DCk/C91WJThVTnM/2JeRzhYSek3StvYMcu21UXSAMTRr00MxPTqXQ7DtARdx8RF/A+55cPuf Dm0hspVVekdvd8Th86HnAru76dGWRnM/zWK7SFtIwfsKvRzt0JyVWCJceb5HWWWmqfhkDcG1 SYkrd2jLNF8yV9Fx7rrg1Bg36HyBzdXKvAxWwcsrJ+dab4Lo6DvUEPUPi48GfxUhlsU+zjXz Cob744CHX/nN17qRZk2QYXuUAcz1oRc0awQFVVvpOiPyh/PL473w126/ovLTTpJTXq3doHCv vu8pqHx6R3vNZPOX2PbX5Fory4CJGc+MCtp4rhg3Olcwx8au56n5qtCPxGApj/QTIoXgaocP r/I4Dm4NTyzqNnSuXVt2/vp4V5//gQLG/ldXdDisSl8VmFTBaz8a697g8Xx08kiIfxVKqdDt KoLz0GzHeT5TUvtXuQP/9yc2VWa23UVb19e158mMIid4j7LIT1UQgqJPNXi1Xl360HKeNb4g SUjWfaIEzvK5LpWsZXIxu4iY3eVkPQ7jM5Ff10ufyvDCaAoevi/51HCu1g7rKI0LNFQuVY3z bJx1ArBN6v0nmihY93TrFunAm+M7Z4BWa2clAEQ6xskqRWY6OzkWn8quF1Inw3FyIgfeej4B Xcg+cKcN5nIXO528k/iJ3uA89iSbYi7hg1clF7YjBrc3VUdgInF6oZIipxzbHtjMF+aa5Pnc yil4P7lySt4LK2ew9IxXM9c1gvblUz6Onw7KqJ3zdlJeJor+XEi9jNWk4v9Gc493onl6GEuE cHKOvZlYLozjSMUPi4wYx6UkS1SFP8H3hZgp12zje8bZqArIek4WNhHUIM3tuCDjCoEjjht9 jLjrmCPRtaNUgoeSGRnCSwyRY0c+MCTo5qeH1wFasTWuVz/gG9dRVaLmEAmiOZKCuECL30z2 5maFjDanenheK9yMYGRwnX8GBkfcw5Fhc5FhukHEFg9OW+1mDmcB4lpnzyXcOQwRn6RRudPN FQeE7+Z9gHFo3kF6hQA8sJCnEw6gGBp5VpnKoviMsQqd6B1alzga0+PKddUnvdCh/SJ8GXgz hX2Czf8U22LuYFOHgm7pMdFbImltWUXU7Mouhm8RwesY+uBRxepd97MGsAhCXXTAWNcBmpOp muoK6wNJDqp1JSIx3oZMasC7hVFjDD7LuMEZuypFmI6kIgk1aOvIL5BSgu2DB6jpLoMT7kjs wp8dowN6+TgYgIwPWbespLnpt2V8PCE0DQvMkk7os7ZE84QnSJ37tv6hdQfPwvybK/Vfy7uH 88fdf57OtpM5mRpUWXc1CVUFaxMBF8eX4EFneoKPVNlxzS4yqFkNm4tLzVJuIkSuvVInKNrW +6o47LB3vGIr2fX7DuHWz1QfHnDhrsoN9+FrbZZRLCHgZF9uR02aU16wKaqp5EpLIB4zVZ2H d2DLIIdnk8LXQib6uNM9Dk99F42p2XzDV4To1qyFoPeNVrsKAn+7e0KEAnb2Aqw0MsPnXm3h +fXj/P3t9R61ZkzAxyVcxKJ7TySxzPT78/sDml+ZsV6RGs9RSzlUG6JW39LRSyR7/fHy9fbx 7XwVn//n0bCCH7ilUGHdMHB0sZ9lpryVv7Kf7x/n56vi5Sr69vj9N/AicP/4N58CsaFz1G2y IYgo0tA+WHd+JNjRo4PFDRhhhyrRn3KHYN0RzbcOZ2aDMziMqdf1QCrZBYgX9ieOyksU3sPb qK7w6LoKD8uLAn9I6JhKn1gZ6RxdI9SlB6miknG98YQbeNMFqImzraaoIloZvr3efb1/fTaa 3yXtHj5sbRDITniYwsOMACodFpiaHGUWoqOD1kPqSDXlH9u38/n9/o4vtjevb/TGNVY3BxpF bZLvKPpgB4+Tu0OtLP9xSQjsnqTTFUW/6VKhotTH/84aV1XEeMCFPNpaK6W8qW/Kxb//unIE tGnam2yHqRt1aF4m2p22naPIMnkRX6708eMs6xH+eHwC3z/DDLddldE6URw0ip+ilZGqLaOj h7BKdsLu4c/FWKnPF975khtvD9DVhX8BoizGnngBipMjUV8SxQcj31ZEXqwo1DKjUXtbac75 aqEsYFyDABW5dekNS7D6igrf/Lh74iLumGtD2Hqws48VLVgBwLMF35WMNZZUFlKDlKZRZJD+ n7UnW3IbR/JXHP20G9EdFg9dD/MAkZREFymyCEqm64VR7VK3K8J1bB0x4/n6zQRAEgkmZc/G vqiKmYkbSCSAPGCj2TvZIagknn3ZytH5bM403JNYJ3HsKmKKZUkiMQgtKXfrpThT75C7T2rk DiGVxSmTzhBg9mnMpCzzVpfJVdjQ9N7JoOOPJZnCKqoHGnr6s/ZUZLXYJReIAo6IdF7N6T0c mzmGOlO8u9vOm/vv949jLmCGicP2Tn9+ac/uysb+SU7bKrnuSjafH3ZPQPj4ZE9Og2p3xamL CFIc4gTnqsVNLaIyqVTIZjQHts0vbRLcVKRgfejadOghTJYisl7cSDYgS+pDK2nEyM0kiqFm 2I1aoGn7sFECBfBsG83t0kClxtzKYtSlWnNt3DUK3FXjUETlT0jK0paCKUm/uOKtpeaUNHWk HnE1o//X29enRyMYch6pNTkcP6P2E68Raii2UqxD26eLgRsniW6G5ghzqINwzRtXGMJcNF44 X3K2OQNFENjeJgb4crmw/QUOCOXkx4WX9WFOzF4MXHFEpZyJxnUjdFWv1stAjLKT+Xxu2zQZ MPozd70tDqg+KPOlPlF0NfwGrAJCDgeRikSOEXWOFzFxJSbc8GqCZMNfUxhZDcShLa+ogoo0 GQhKNS//4v1Fkqd8QA9Aujj7GLsrqYf3HjjtKP0ECFwLG6r6guIdvtEckrqNuPKQIN2S0rSu QXtIWH/yavu3dQhjsQIhK44r6Ilh4Lu7vqqMSCxGNIlvt3nkY8eT/UBvdy1baGrbLsEHGoVu 7U1ngLWRJSZY4DgXLDnAtXDMYtFnLUjCx9wt7Ao1q1tt726BjatD1Pxlaqj/3Uo2zYhUlSpx 1+hJfJtEfu4cx/1wwB25HYiBVE4xy9G5Z2Qm0y2UuMmC0HrgNQCjJT0sKAQvR1E0hxWTC2/i th1QIasFtckjYE/KT6Tl+NeGuuFWY+GzeqCxCDzr6QLGvYpn5B5agzjfOApj+7RSHV2bCgSo aj+BQydRDv6qkTGJaqkAk7121USfrryZx79R5VHgs1o9IDMvQ3uHMAAaMRCBiwVxFi5W4dwn gPV87rXGkzqFumTWk3beRDCicwJYaOO3Yc3XV6tgwlsH4jZizmtl/5/MtvpZupytvYp7swGU vyY2tgBZzBbAIZUCvKgEnOkm7jvi5XrNHfwFGuQ1eJtNpqm52AAolwavJzAB2c/wykLkYh77 U8ma0p81piQLtlpRGF46KO1Jt1JRhJpk3kT2sVjjqtuVTqrkcEqyokyAHdVJVBfcWbw7usT2 sbORbVahmEVqt2+W9kJND8JvGpqyU1mjwLxZxjQr7XfR7cmsjFAL2G2ljQ/8Mb7D1pEfLsks USDWmZjC2GIXinbBwl4nolkvbAXuPCqD0LdkqE4HDnWDQChEhyW0G9VNnxQVaXpe+qi2Q2AH cVwSa/lDCTOBZKbkvhOOSa/5aGO0J6C2KUi+g7CYjjNT8NMEHMC25z/1RvmlKmideqHetHE4 aiqHYe7wKh9hE4Mn1QRp8yJ2PXBryUQ3vEoYuAuKtzLOWWKNcRYJCDdhqtcOUy/12hXNVp7V OgWTwPkJz0RoDrL/1PQ8bRfejPafeQ1run76T+1Xty9Pj28fksc7W0cWNrkqkZGgd4TjFOYy /Pk7HLhpxMk8Co3L0v42uqf6ZXtVm/96E7vFL5quRt/OD/df0SBVeViiudcZCLPl3sTXYlk2 UiQ3hSEhl7x5suBtUyK5std+Kq7diCVljrYDnDs7GcXBrHXpNXQikLnCaT/YZG5iwMQKo8fJ XclKE7KUAXExdrpZrflgXqNu1J6r7u86z1Votho9PTw8PdqXODyBPd1yabpWGhmmN/tGoyYy apaBLMHpZxxZdiWNqzFGOmKdXYUfEzg7Xlln5QwT71Yvjqn5O5+xQdoBEVDVb4CEIeeIBBDz tV+1G2EHfFTQoCKAhe00Er/XC9qiuCxq9KJinfNkGPoht48CGS+bLvyAdYAGe97cI5G3EbLy OWUm2A5ReX7EY8WYIQuXd9fKEcx8vrSWmOaPmNxihRcHqZ9md+8PDz/MFSPlhMrXOJyqtKmV PSn0vWDni3wCY2w6nflkE/SnSTK3SYW0q/6X8/+8nx+//uit6v+NoQriWH4ss6x7m9Qqgert /vbt6eVjfP/69nL/5zt6DbAXw0U67WP22+3r+Y8MyM53H7Knp+cP/wXl/PeHv/p6vFr1sPP+ T1N26X7SQrLm/v7x8vT69en5DBOqYw49S955tqaZ/qZrYNsI6YNAbB+YBphzkCqPwcw2tzcA SmX4hBJx+FOjQtmHxuEEX++CkYmOM3/HDdbM93z7/e2bxSE76Mvbh+r27fwhf3q8fyP9I7ZJ GNpx5/HGcebNZs6qRZjP1onN3kLaNdL1eX+4v7t/+zEeLJH7gWexgHhf27vmPsZjS0MAPvGs ua+l79sp1Ld7c7CvjywLkumSnGTx25/Zi3FUdWNlBBwEo4Y8nG9f31/OD2cQit6hK8g8TD37 /K2/6azZNoVcLW0LwQ7i3sBc5c2C1ylND6c2jfLQX8ympAMkgVm7ULPW9s9AEMx0zmS+iGUz Bb+Upk0D4kPjQpfpOCP3f397YyZIVIJYnJH1IuJPcSsDjxtRER8bb2YH0BFZoJ2WD+kz2LxY B+iijOU6sMdDQdbUDk/IZeCzpW/2HvHMgd/2K0IEu5m3or6+ctdbuI3iA0ABYjGjjr8Asphz VdqVvihntndnDYEOmM3sO85ruYCFg109LIdOIpKZv555JLwWxbF+7BXKsy2vP0nh+bZvq6qs ZnPf4zKeDqpVV/MZPaWfYIRD1mMTMDLgdvaIGgi5pzsUwgOezt3alzXMB1JaCW3wZwhlOYrn 2S5A8du+YJX1VRB4xHlLezylkspBBuSysTqSQcja2yuMis8w6scaRoEPbKAwtrEKApZL4l0P QOE84Fp6lHNv5VsPoqfokNGu1hDbgOiU5Nli5hw4FGzJHU5O2cJbEeIbGBDofY/dmCgP0foU t38/nt/0dSLDXa5WaztEiPq2r8OvZuu1RxTUzQV1LnaHCW4LqMCz96g8j4K5H44vmVUmvLTQ 5T+WFrpxhVP2fBUGUwdCQ1XlgWcPCYVTqeiLyMVewB85D8gmyHai7t7372/3z9/P/6Jmtnim OzYkC5vQ7KFfv98/jkbG2jAYvCLowlF9+AOdJD3egVj/eKal76s6za3nFee9BN9rq+pY1h0B /zJljh9Z6WY2IrlAUKOTGPRBNJEe4/WQepr28600e+UjiGAqHsXt49/v3+H/56fXe+UabDTH FWMP27KQdu6/kgWRuJ+f3mDHvmeekOa+HRgmRp+YNKwvnABD/rQIJ8AZdVCKIIffDLyozCZl 0olqsk2A7nyjsczycj02tJ7IWafWZ6SX8yvKMmT6dv2yKWeLWc496W7y0l8RyRC/qTAVZ3tg ipZ727iUARF8y5mlC5BGpTcjCx2OmJ43d7/pggdY4Nnidy7nC/uGXn87iQAWLEcMq6wS6Z5z DdSVZet5yF577Ut/tiCUN6UA4Yg3vBt1/iBGPqLfNIaljJFmGJ/+df+AQj4uh7v7V32hOFpJ nWOo/GpToneoJs0xtt3QEyjvuKJJGotKaQi2fETrjQctJNeC6YGbNNUWHffZV/yy2trRSmSz DqicCxA+PAKmtMIV4jYdaJl52JSzeZDNmknvhD/ps/9fv3ia658fnvG2YmK9KTY3E8DRk7zk Ojpr1rOFF5JTroJNSN91DmIzdxenEEsqJH2RrDSoED7RPOSaYQmiE0HPTnmCilpMEcTdDnzo DYVMqM/5BQ/8iFX6MnzeRpdmn0VxpMp6GCNrWzEDwf0rJK1ZH3T9gRY/7XBGYZMqSw9OAb26 tQWMslIuPRqARsHHKkh2z3x2atkHOCGZmOgsk124TzcnzhUc4tJ852aX5g03XwzKXzL0sP1N F68V0LIdpzqq8Hp10JZ2t7wyqkcIfCZ1gTZ/7yDKsz8DNR7l3Hk4FbpG4VB/OZUlHereTwiF Nk5dukA+pDSlXRXnSjib7DoVFph94lXYZjRdLT9AIFVx+pyKKrL9YymIUZyqy6ODMK+gzjo2 WsKE1JgsUljmr6Iyi53k+FbqgqrYSVqnbuumQpv0OBhgJ1t8/6T5Ko1RB5QmkShHsH01Yipw 9IWv2slSx/rp3l7S6vrD12/3z1asg24fqK5pXwpYuKktv4g4qQTSEdU4fF9oRToRcMgMHSyz CFOWKR9qo6eDSlwkQHv4EVW3O5vxVKXZh/NwhSe2ylLBtR38EERXzn4lnWwwHEZnawntjRPi 5BX5DFDIOplYMYrgUMPpbloVBIuIinyTHoiVRFEcdqjPUEZ7EHKiCUwuLX6SY1wNM1DdsdAd +b5hpYiuWkdLUrm2hRWHDudZSUi9mELaIqoFUXJEr1cRY+yhMaLeL2nYKg1upDebCKekCJQV UTgRIE9TqO3uEsGl2Kg2hXnF52RJ7dNLxlfjJqCuzWQSvc3sPo+TXfnetPewTMByvnb70Gw/ LlhtEdYN4QDs3AhXG5tpaQLUd7nQJWUqawF8gbeo0zRKd0UUkjX5GChKosCi4NaO4FZceeV0 yPX737gPFXvNS28+PQDG+nyUoxPQTAF7R11unSxTa6cGPWPYZUduY9NUaGQ9FGasrzs/ccZp HY9EH3MdC0fHyPL9z1dlwTHwbxP3Df0LD9lYwDZPYd+NCRrBnTCDCulFvaNIJ74XgpRh/FRm xmQYddJpKmOg6flCOVWgqSgyQNEo4SjQq4vCMVkjTlUKCYyvyKk8JipvLBWxDnuK0Q4Uu3oN 275OBMfCCVfOneCuHUnoAkepD1KheTkLaA7SV4MTV1zwC5WLci8gakE7RoEhpQPVFR73ownL 19ZFVRGrFBsZM43ocBIWQMW9DhEikZ0KmrdSuFdeCU1tSe552gDr7Idsspv0InEHwiHBRTYx VpoA2T9uwUwz0ZUjMPJDMRouezUpjt2eqgYDAI072eArkDvMOhguvnTExOVcGXZkR5Alqgkv 6Goc1X6nh/0Hg+C6UplEQBFQtWOd81YeNuGqwc6YrgMI+a2/OsApTqYRbWiPGi93RHG1y8vg wtgo9LgcPPzUOFpubgA/btmDv8E2csQBELyPbVOODqrnny1iKXZXiqqZozAUJ9KdL0WUZEVt kBP1UOKQ6gwnsXZJUF6HM299oVP0xgqzzOliBb+2Y2YOUDUgYziyGHkoZbtN8rrAyJMPTJWQ ai/VyF6qkspMMnWCJq1mi2bMlioBk/aKgfdOesabymDapr6aGS1wMCvFRavG9QIeBjfW84gj Ga/kHlV/KZPIHT8j0celDkow0VeGSk0uRUcr2Fn3jbbDzjLouJXO5twhHN6icPPyBMLmJe7V izFmjpD0NpK3vCBUWOufFSP2NPCvqmatj+BeAHWFnplkPgNhaAhHLa7TfThbXlg/+mAOePiI aB+ro7i3DtvSP7p11AZe09mKfDEPB7ZgYT4tfS9pP6c3A1hdtpgTE5XeQBAt0zIJ3Hbp08RV kuQbAbMkZw3ExoSjtdVffqktz5l8AxILoAmN+rRxGmRd0lLZtE+CJryRHbIyrktyxZVHE+cy 1o4cGmK9PeNXFx6i/Vylda9oaody6TbZQ1wVrgcMN8xLTx0L7rR+OOWJdXesPvvbYwJUh/40 JxoTPaKIipr3AWLMDZPtUfKGljqTTnJP0NsMf4ijhE55hAYtT1SNrEct2PdUHez66z1k65ZI +wLtGGQsSMN7fjlqlkugK+G0AcXWUY/RUtVaxqAmpNye2fysO7Ua7PSo9O5jphpgqnE4Sejx XWndYlYY4kOWZqQshRVtrdF1cgdFj0Ojjte5V/AzWbQS+A+nSuTdCth//vD2cvtVvdy5F37Q X0Ttpc515BbUlU7Z+7WeAiZ7a8URQoSjz4sgWRyrKOn9pvxgcHvg3/UmEbYzLsV36j25XTMw 3FRYNT2DFhHxOtaBdxO5yZqP6dsTwGZ6maCsU5aVMP0+pHbd4A0IyYvkdcJNNxWpsMySRl1I uFolrA+UI5rI7JZrnzulIdZYpFsQEzuR00cZ+ZwqYYmWFpeXaUHeg/BbuU3AYtiWyizNnec6 0ukV/H9IoomwNcURSfjFW7ixbjotBerzQKuM338/f9B7GOm/k8BX6TqBgULLR8mqv2yVFzR7 s0ua2m9tSc0A2kbUNblM6hBlIVMYqoi3q+yoZBIdYbvjj8RAFLTs+QcwYUtfOg3o5+WGv1Ju eOHVVKGvgCfX7Shuebf7bWIiu+L3pJU/VCffREIHA+u4bZLC0ADG7vMeCKSRc33bk+sR4eqk c7Nr9dPu+vSzrkKC6Z5SyWtRpyDFshqazahOCDFOFtsTp+2IBNfHohZuKrYlFr6q3RTFAURA 2NSi6siLbkj0WVT8jXzDNd3gQIzznYZtaj0+3M6XZj19Nyf8Uc8oEPYmn4lJMV6QHeJS/3Q0 3Vg7FVHzjauOdvuYHj4lKnQOvyOYvPEWBjWCUvYR+KY4JN10tzaTCfHVbo7NpHDauGxBw9qN coFblGzfpehYE/AkEim6/EFr0i8u3q5fcoiqL+V042V7StzV0+MORZ1uyZEv1iBWQFAY5SPI Gh7R59EJt2ZtdPtZBXuOBqqp7LRAI6ZX8PU2h3XIq+RpHHcOV7lqxyHDqeVYF1sZ8pNXIwmz Q9mRACIiYGpnks58KaCvM/HFKcNYnX79drb0uQ5JPXAaqz+lw4gNYBT0HoE4LewK9rCe2jJW VcXrqsR/gAT9MT7FapceNulupGWxxjteu/Gfiiylr7U3QLblpYxjvG1dVFcPvmytKlnIj1tR f0wa/D3UfO22igHZz7SQjkBOLgl+dy5iMQZoKXbJP8JgyeHTItqjWFL/47f716fVar7+w/vN Wk8W6bHecpYHqvqkfA1hSnh/+2tlZX6oRxx6kLEudY5+03o9v989ffiLdNpw54F+Gfi7XMTA oTGLq8QyzL9KqoPdiJFqV52XE+O/P+6SOtuwpek/o80F5u1JVFONZ5rWD38qI8UfoX51Ygfn LCpx2CWjkkTMdHKH205tkYniss5y74F4rpUqni2TdO8wFvgusyOFbZItAxhWcQedrJ6T/NPW 3dA7iMl0NoKrWx/XvdCABYzaSWxWr7ESTq2COsnqk03Lgkhg7cho62Ji3zm53GQpLxxpdHbD n4I0VmniT5YPYld6GJcY5cAj2kPBeja1SWBvK4y0wmaB7jgvVE4TbcUJzvFOMzpGuklHMkkH g4l8Qp9/se7GC6mxj4ZB66E3xM//AJZ17IIFdqO1WY0rMzXQQ22P9T45gBgucJytjawSOdll 1beWlnQ84eFsqlF5zb3hyuujkHs7pw6ipaduWx2OyQQdp5VzJHbJ4gT7Gcb0sMv4jAyFulPg T+YcJXriikr+jqRPMNW9PYEZzHHK7Ca8nDU/84aSb9hscZZcShYqd7AbFdTgxr636giSfJPE sR1+dBiQSuxydLuoJR+VQdBv7v2Rrd8ADiCHUx5f5FOMcl86ya8PTTjaIwC4mMqhMpnTe1k1 Z0V0hS7avujZy1/GO5T8ZB7lV9SWNoXGAs9UxTDw3F7BpayJ9wL93UsjV+gZffOlBkHSm/nh zJIYesIM72s6Zs2/WmlamEssnUsV9lTkVahH76NfyGYVDjuI21w1P6exkwi7apbLfLeKdtEd 2aV+IbXhEvDV62vw2/d/h7+NiLorYbc0dHY/nXlFnxQMdMOG/wCZ6uQsjeOkCFK5J6gO4p5d evj47q7D/OQSrSO7fIvWUd2k7IOHbWwMH0NnW3K/he4ODi0cHGjCHrO0TZMoZjmfwKxsL6kO hjwfOzhOZ9whmarmyvYM4GCIuamD49WrHCLOtsohCSdLn+ykxWISs57ArIOpNOv5VPvX1BqK 4kLOhSOtzDKkXQ5HZJxJ7WpiJDx/cvQB5VGUkFGa8vl7PNinzezAgdvGDsFdd9r4+VRC3u2w TcFpldr49UTDAr4J1JSKYKYWxlWRrtqKFqNgRzerXES4lwrumrDDRwmIbhGtnIYf6uRYFVye UVWA8Hs52y9VmmW2fnqH2Ykk4wrcVYltn9KBU6ggegxnqpEejim/W5HGX65ofayuUrmn9cQL EefZGOcze6Qn70Pagdb56/sLGvU9PaMlsHXlg3GA7YuJL+hO/vqYyLp1bstAlpaprFF4BLIK ZHUrYV2hPmDcZTdsFPoK1WDYngFEG+/hkJpU6vzCbYBIoy5DzRmHlNHtVG2cJ1LpMtdVOvEG d3FX65DsHqzeOiJ1RYtny32SlcSHPoduSwHC5W8fX/+8f/z4/np+eXi6O//x7fz9+fzSb4Cd tDg0Q9g2FDIHEeX28Q4dO/2OP3dP/3z8/cftwy183d493z/+/nr71xlqen/3+/3j2/lvHOjf /3z+6zc99lf/W9mRLbeNI39FNU+7VTspSyM7zkMewEMiI14BSUnOC0txNLYq8VGSPDvZr99u gAcaaGqzT7a6m7jRaPSF/fF5/2PyuDt+26sY2WENtC9TPL0cf04OzwdM43L4z67NKdU2IEZb GDrZr9S1nRqqAYU+ywkIy30/WBNAR7qALWVQEsst344OPd6NPhGcvci7yre51PK8sWBFeZf5 VopcDUvD1C/ubOg2lzao+GxDpIiDG1iAfr42b+GwAfLOBO4ff76eXyb3L8f95OU40WvBDEVG YhjRJXmgjIBnLjwUAQt0ScuVHxcReY6NItxPImEyIwPokkrTxjLAWEL32ayu4aMtEWONXxWF S70ybf1dCSj/u6TAk8WSKbeFE8mFovrnwMbMxRZ5uK2k0MRObcvFdHab1omDyOqEB7o9UX/I 2dT1XCmJOL+ZlkA9FNemaCzevv443P/+ff9zcq8W7MNx9/r401mnshTM0ATcC3EtLjTfdelh QcQUA+CSd0TpCaRFYS3plBmfWq7D2fX19EO3I8Xb+RETQNzvzvtvk/BZdRjTZfz7cH6ciNPp 5f6gUMHuvDPV/l2JPvuwbjulfuo2IYKDVcyuijy5w+xEzM5dxiUsBWYWy/BzvL40upEAVrvu +uapdIB46pycufM9dyb8hWeqCzWM3iN76IXFHvpuMYncONXlC8+BFbpddn3bipceur0e3uGb R+NNyqJ+uO2WiQDksapOmeFGBToZbu21tjs9jg1qama57HhlKtyh3mI/3RrXKU3N2SU62Z/O bmXS/2PGTCKC3fq2LB/3ErEKZx4z4hpzYZahnmp6FcQLl5GxVY2u9zSYO2OWBu5EpTEsbxVs 43ZapgHJDtntl4i8T90DZ9c3HPh6ypyYkfjDBaYMrALhxsuXTrs3hS5XM4/D6+P+6K4cQSM0 Bij/5lI/SflmgZcFu84O0SUFd3a1SEO4DQkGgaK/lUncwF1zzADgXEaN7jwI3bNuof6O8kZ3 cENZkKivfiLmTIOqTY6ddz0FXp5eMb0MkXD7ViplrMu4TAtPC7udzxi6uUOn9K0OVJmBusc6 QbR/eZpkb09f98cucSvXPJGVceMXnIQVSA/df7Oax7TsxzmlFU6UFw5rRaL5v4twgJ/iqgox NE/mpvxsCIxN+yKkKQn/OHw97kDuP768nQ/PDEtNYq/dHC685VFdHKk7JwMNi9PLrf+cq0KT 8F/3soRRgj3MlHB8rJGO2ygI7zgnyFtosJleIrnUl1EOPHTUEEu4Lves0+5mtOFcf8q7NA3x Nq5u8BiJRK5MHbKovaSlKWtvlKwqUkLTN3B7ffWh8UPZKgjC1vvV0F2s/PIWbcprxGIZNkVX dgt/Mr983/og8OW+V5IzfkyUEvEyw3dSQ20DVeb9VnnhciXMoPqnEkBPkz/hVng6PDzrTEL3 j/v773DbNdzilS+GqXCRxLPNxZcff/vNwupbiDFizvcORfsA5tWHG6IwybNAyDu7Oby9A8uF 3eivkrisRls+UCiWgf9hB4ZKNZkM17keT0XCe0T9wsC22cXGmJC+0ptX/Q7SeHCdAt4qDTMh +pwK2SjvGBpwKZSDITMuXgxiAywP81XMLiwe3wCrqzihkkEug5iNqJLoSZDVqQelme3FQTKT YPRR935s+4J3KAtcVmnhPF0lpB+hwguE3mLrR0vlRSlDIg76cD2CY4GApjeUwhUiof6qbuhX VKSFn/R1c4oBbhJ6d5wHGSGYM58KuYHVPnLXQApvRMML2BveHwAwnPofwIZNC7irK8/7hnWj F+AHg7fIgjw1RoKphFhyn0yodpSgcHR1wEOaCkJf9NlkQU2DtLEDvuRmyQZ8zlKb9mhKzZVC Tc9PBMzRb78g2BwzDWm2t5y82iJVPGDBfRYL9sGHFitoXqwBWkV1ysVithQYpu3bjW48/xNT 2sg0D52n8iqBz1k4dUrqGIDS6ar3dgZGop/1TvKUph4ZoKjuv+U/wBovoEye4PkR+aHM8ZV6 y8v0QVTxNmuRNHjtMuUFfHkceN46hKGXwpBEI6FiX8zgSA1SEQmE4SGcvD+YqQard+WaJMyW ptOIwiECI2XREGAzScSJIJBN1dzMgX9Y6LayBs+Sxk9CYdy8EA7jkwjllhCFNPVFuYnzKvEo ucBUANQtgIChG0YJy0TPtbEEktyjvwZWO8iEyZemEgYdJocC0dE4ZtIiJm5w8GMRGI3P4wCf LobDWxqTVPvo91hZogEG6eZG2SWMIpmwAtNTZMRh3Psklqwkogo3+2QkErXkgGFVZVNc3Xkw RLP1FolOQlPQ1+Ph+fxdZ8982p9Mc4vhMAyLd9XYDpQ23se36zjXNF/7p8CBu0xAdkh6Vfr7 UYrPNfqYz/u5aQVap4S54RGb51XXlCBMxIjR7C71cpTeQykzYXeoHdfRQelv5Ycf+9/Ph6dW MDsp0nsNP7pWywWwglDFPHycXc1vzZktYK4w3NlkFTIUgVLSA8rY4yFmjMM8arBnzYXb7hId 94Je0KmoTJ5kY1RDMOKIhnuoUhY5xpEu6kx/IpIYU4PPxrKBggCJQY2CD/E1i9yEYqVeGnUc HDvh91dHVc2B0jwc7rtFHey/vj08oJktfj6dj2/4qoMx/qlYwoyDJG7mpjOAvYkvzHDcP179 PR16YdLpPG2XOjsSBuGVImO7/UsdoTON7vihM//tK8qmjbQvjGxm3EdwXcIXuUYihXSBSKhY Lb/nsZh8k7EbXiGLPC5zO8hHFw28LuQ18qUf4cGl7LdhFvThheTzdeoWuU6VLhp9AC70Cagk v5Z7fLEEwXHJT2M70uolaGUj5pidrw7ITS7xBtVkOcx8XMFlVB2pWtyzjcjDRNl1lREmGnQU 7Eg/yV9eT/+a4ANHb696r0S75wfKuQWmZUSfej7ajOAxILcOh3gAjUSun9fVAMZrU130T3Ea fCZfVC6S8GclFJmEqg7umjlKbLdSV9VEmKelEiVZLHpT96i+L9PZlVvRQKbqMWS6MZK2Kb1+ a/MZWCsw2CAna17pW3QX+Hiei7OpHWKAIX57Qy5I93TnSsCg6ZbBnq/CsNDbUSsR0NY28Jt/ nF4Pz2h/g1Y8vZ33f+/hn/35/t27d/8cOKkuDcXPugq3pv6vXa9QQ+uKbO8a/cGFfSU3ZZhy q1SjQbpPkREn0A272jYgUgmNnaBk3s8w3hKWY1VLbfkeUJuNbhmVr3putCCfcdu9DHTxGxFX brDd/zPI9njAzndYUS85AIOspPCJg4s614FlN3VWgowPjFRfuUeHdKUZcbci9EL8rk+ib7vz boJH0D0qoE72ElB6LmeSC1e3RZcHH9qpkdpjCkQcjh/gqQFXL1EJ1Cjhmxkx9ce52Hi7Kl/C 8GQVnOVueKb0a7LLul3MLh/MPKfeKG1s1Q5ixtYOIZLhwiiCCwEAIpCaGiX29TxsNrXqwtUw 8nX4mYkDpf2kswucTIttUgls7kTrEGYQI1DNxjU6whwtvRypGmccFRqroE2qEk0oNyQZEJ20 wPyk7gQddjdzboZQ29EsYcnXMJbTm5RYiRVSRyBH4ouQwQgnat1j1lHB9UqV0i4hrUU0bpQD zsoVbDXYvI1V+9MZGQPye//lr/1x92A8IaMyOwyXWJ3ooc3NNFQ85H8weZeGhls1iOMrUJOp hWV7BA3OoO3GxDtTLv9XjP14HD6VkEAu8vO1XhpNYSazheWAqmFsEDJ1airUpynq20uMQHsi 8DTO8J5UWOQMZRCvTe9zr+On6hxwBlN6qLW5sI9N/dDINiYKIIdd6NCvsW/12XczZ5XIpjPf yPeqy1G4Deq0cESTVsGgfUA55ttRlehoSIdxBeAq31rjrfbZwgLaKhAFrOs4sEBbSw2mgBhO v0jyjdN4iVrmCvcsOzG645bVmGLjgPPJ0v3otDRk7a2I603XN17AVli4mCiVlf0Vet/CaVaw GRliuP1AsYbZxv58EcsUjnyO6cOHsGGTwOYgcP/QmaIIz+hVI6VfJSPsRNvAehQ7nMScNCow pYFKdcK1AJpdWiA9UEqfYwFbF2ZlMbSHBp1iBczf+GJWBi5Ttdl910KtocYti7daPij9EjO3 xDO4pmPcaBPkfo2RjTzH1ZKcF2uOe7HSTp/3X5gTMzgzGgIA --PNTmBPCT7hxwcZjr--