From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-10.2 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING, SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED,USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 82FB1C4338F for ; Fri, 6 Aug 2021 19:31:39 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id 5ADBE61165 for ; Fri, 6 Aug 2021 19:31:39 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S243949AbhHFTbx (ORCPT ); Fri, 6 Aug 2021 15:31:53 -0400 Received: from mga01.intel.com ([192.55.52.88]:9461 "EHLO mga01.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S243646AbhHFTbw (ORCPT ); Fri, 6 Aug 2021 15:31:52 -0400 X-IronPort-AV: E=McAfee;i="6200,9189,10068"; a="236415884" X-IronPort-AV: E=Sophos;i="5.84,301,1620716400"; d="gz'50?scan'50,208,50";a="236415884" Received: from fmsmga001.fm.intel.com ([10.253.24.23]) by fmsmga101.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 06 Aug 2021 12:31:34 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.84,301,1620716400"; d="gz'50?scan'50,208,50";a="586937335" Received: from lkp-server01.sh.intel.com (HELO d053b881505b) ([10.239.97.150]) by fmsmga001.fm.intel.com with ESMTP; 06 Aug 2021 12:31:32 -0700 Received: from kbuild by d053b881505b with local (Exim 4.92) (envelope-from ) id 1mC5Z5-000HBs-T5; Fri, 06 Aug 2021 19:31:31 +0000 Date: Sat, 7 Aug 2021 03:30:39 +0800 From: kernel test robot To: Luc Van Oostenryck Cc: kbuild-all@lists.01.org, linux-kernel@vger.kernel.org, Miguel Ojeda Subject: arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: sparse: incorrect type in argument 1 (different base types) Message-ID: <202108070329.5KFfPhAF-lkp@intel.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="n8g4imXOkfNTN/H1" Content-Disposition: inline User-Agent: Mutt/1.10.1 (2018-07-13) Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org --n8g4imXOkfNTN/H1 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline tree: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master head: 902e7f373fff2476b53824264c12e4e76c7ec02a commit: e5fc436f06eef54ef512ea55a9db8eb9f2e76959 sparse: use static inline for __chk_{user,io}_ptr() date: 11 months ago config: sh-randconfig-s031-20210806 (attached as .config) compiler: sh4-linux-gcc (GCC) 10.3.0 reproduce: wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # apt-get install sparse # sparse version: v0.6.3-348-gf0e6938b-dirty # https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e5fc436f06eef54ef512ea55a9db8eb9f2e76959 git remote add linus https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git git fetch --no-tags linus master git checkout e5fc436f06eef54ef512ea55a9db8eb9f2e76959 # save the attached .config to linux build tree COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-10.3.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' ARCH=sh If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) >> arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: got unsigned int >> arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/setup-sh7203.c:348:9: sparse: got unsigned int arch/sh/kernel/cpu/sh2a/setup-sh7203.c:351:9: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/setup-sh7203.c:351:9: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/setup-sh7203.c:351:9: sparse: got unsigned int arch/sh/kernel/cpu/sh2a/setup-sh7203.c:351:9: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/setup-sh7203.c:351:9: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/setup-sh7203.c:351:9: sparse: got unsigned int -- >> arch/sh/kernel/cpu/sh2a/clock-sh7203.c:29:32: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/clock-sh7203.c:29:32: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/clock-sh7203.c:29:32: sparse: got unsigned int arch/sh/kernel/cpu/sh2a/clock-sh7203.c:38:20: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/clock-sh7203.c:38:20: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/clock-sh7203.c:38:20: sparse: got unsigned int arch/sh/kernel/cpu/sh2a/clock-sh7203.c:48:20: sparse: sparse: incorrect type in argument 1 (different base types) @@ expected void const volatile [noderef] __iomem *ptr @@ got unsigned int @@ arch/sh/kernel/cpu/sh2a/clock-sh7203.c:48:20: sparse: expected void const volatile [noderef] __iomem *ptr arch/sh/kernel/cpu/sh2a/clock-sh7203.c:48:20: sparse: got unsigned int vim +348 arch/sh/kernel/cpu/sh2a/setup-sh7203.c 698aa99da5f5e2 Magnus Damm 2009-04-30 344 698aa99da5f5e2 Magnus Damm 2009-04-30 345 void __init plat_early_device_setup(void) 698aa99da5f5e2 Magnus Damm 2009-04-30 346 { 698aa99da5f5e2 Magnus Damm 2009-04-30 347 /* enable CMT clock */ 698aa99da5f5e2 Magnus Damm 2009-04-30 @348 __raw_writeb(__raw_readb(STBCR4) & ~0x04, STBCR4); :::::: The code at line 348 was first introduced by commit :::::: 698aa99da5f5e2b4c666fd21ab77306f0225b8f5 sh: sh2/sh2a 16-bit CMT platform data :::::: TO: Magnus Damm :::::: CC: Paul Mundt --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --n8g4imXOkfNTN/H1 Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICAh3DWEAAy5jb25maWcAnDzbcuO2ku/5ClZStZVUHWck+TJ2bfkBBEEREUlwCFCW54Wl kTUZVTyWV7KTzN9vA7wBZNPWbh7OGXU3bo1G3+lffvrFI68v++/rl91m/fj4w/tz+7Q9rF+2 D97X3eP2v71AeKlQHgu4+h2I493T678fjt+8y99vfp+cHTYzb7E9PG0fPbp/+rr78xXG7vZP P/3yExVpyOclpeWS5ZKLtFRspW5/Pn67OHvUs5z9udl4v84p/c2bTn4//33yszWGyxIwtz8a 0Lyb53Y6mZxPJg0mDlrE7PxyMptMOhyNSTpv0RNr/ojIksiknAslulUsBE9jnrIOxfNP5Z3I FwCBw/3izQ2fHr3j9uX1uTuun4sFS0s4rUwya3TKVcnSZUly2DFPuLo9n7WriiTjMQP+SNUN iQUlcbP1n1ve+AWHE0sSKwsYkSUrFyxPWVzOP3NrYRvjA2aGo+LPCcExq89jIzTffvFqlLW4 tzt6T/sXzZkB3mzBJnDR9Tb6o1af35oTdoLMGLCQFLEynLc41YAjIVVKEnb7869P+6ftbz93 08p7ueQZRZe8I4pG5aeCFQzFF5LF3Ee2Y1hHchhMCnhKsAbcbtwIEwiXd3z9cvxxfNl+74Qp IffVQJmRXDItg9aLYCnLOTWCKSNxh2NoZEuDhgQiITx1YZInLiAUOWVBqaKckYCn8w7rbKU9 t71kwPxiHkqXP9unB2//tXfQ/oYpyPyCLVmqZMMZtfu+PRwx5kSfywxGiYBTeyep0BgexPgF GTSKifg8KnMmS8UTeHXo9ge76YZnOWNJpmCBlCH336CXIi5SRfJ7e8810h5mDk+z4oNaH//y XmBdbw17OL6sX47eerPZvz697J7+7NihOF2UMKAklApYorq0dglfBrCMoExKTaGwLUrubEry 9rUEXBI/ZgHKlBN22Wo62B+XIiZKK7X6inNaeHJ4v3CC+xJw9p7gZ8lWcO3Y/mVFbA/vgYhc SDNHLXAIagAqAobBVU4oa7dXc8I9SfueFtU/7IM0MHMnqDjyRQRPryeIvfciaQSP1Lyahply 82378Pq4PXhft+uX18P2aMD1BhFsezXzXBSZtDeZsITOkeX9eFGTW5bT/K521EFDwvMSxdBQ lj5JgzseqMi5YmUPQFavV8p44Gy2BudBQlB+1vgQntpnlr9FErAlp9gbrvEgxPoFIYuDYIbj 4/wsRMYYbYlJs6CLloYoyzprswVaGJ6yPV2hZJliwgImKQeM87R5gNMCy+kiEzxVWhMqkVsO UCVspFCid/Vgy+AyAwZajBJlX3IfUy4t9yNnMXG0oBYr4L2x2HmA3pAvhCqrf2O7p6XIQHvz z0wbMHMdIk9ISpnD+B6ZhH+MWeyCB9Orbs/VFdY/KkXU/e7RJqA4uWa+vbacM5WAAilrBwC7 eMO0zkFox4YRvJcRs5YJyVeo5Wr1DFzqAmeqK38dnICdDwt3k91uCnDnUQzLBH4wPk9JHAb2 mcyOQ/yyjSMQYiqAcMf35KIs4HiYSJBgyeEUNTf72s0nec5dZdC4lpr6PpHddTaQsrqVPtQw S4u04kvmCAx2lbA0CwJUvRmx05Jbto5Qc4UaCAJVLhOYTjheT0ank4uB/1BHZtn28HV/+L5+ 2mw99vf2CWwzAXtAtXUGd6Yzue6y7eRGRQ2WR32BE1dsFlwm1XKlcVlAdp23Ehf+qHrUMRNR EG4t3CEEc771TC6ZwMmID2KRz1nj+PTnNuYj5hLUI7xFkYxN0pJFJA/AWNs6MSrCEIK9jMAy hpEE9KylNhKSGfhdWaRaFXISg4JyXg04DSGPexLf3oEbmbbrFnCB0TBIiO4YOL6WGpOK0EXl 3sCYTORuTLoAdT5EgFvNhQZBzGKZhmyutN9YxnDL8PpmtY9i/CPv5cfz1soTgGsoI8s+1AAn HjSwwlf3GWwu+ng1vcENuUX2x+xdEphpNpmeRnZ+GtkVJrI9oqvzN442u7o4aaWr9zmQrHD9 3pvq4+TyNLKr08g+nkZ2fRrZ+8fUZNPJaWQnyQRc42lkJ4nOx8uTZpvcnDrbiA87oMP9gQHd ictOT1v26pTDXpSzyYk3cdKz+zg76c18PD+N7PI0Cb46bW8fTxOm6xPJTnur16e81dVJBzi/ OPEOTrrR8ytnZ8YsJNvv+8MPD7yG9Z/b7+A0ePtnnUu2HRRtNEUYSqZuJ/9O6v/aaFMnrcAA rcrPImUCLG9+e9PaVZaI/F5bt9yMvXbHNmgwtRp74WLPZz63rJ3J44Xg68GokqXaxPWQVZbs BHTnaDh4FjOqmk0lImCWz1mklJhYDExt1kvzGAbpQ5QXCx+9iI7ieoE5QR1+erXw8bmvBpPX rsf4FVb5rPXm29bbjBQK9KHKu5wr5hPquHUWSkUQfM4jXMYMGYgHnqZCFje7yg77zfZ43Dsp E0tsY64U+DAsDThJ+ybb1968waBbkiAnWYG5iQYBgUDhejy6/AAIO6uE7M/s29+vDw/e8fX5 eX946bYMM9MCYvekpPHCnsel77KrJmW3edxv/hq7Gpgyg8m0W/vp9rz+z15PJ4QyO0ncwsD1 mxN6b+/j7UWbxKcXHrb/87p92vzwjpv1Y5XrfBNpcdFs9EcfUs7FsiRKQcjP1Aga4opEpAgS FIfqX75BNDlSPdrKOIxqweEgcQeRD4R9pw/RaQWTAjp9iEgDBhtDM2oYPeBgkWUvnnV4NZZf cWhOO9z/4VCnHgY5RCs+X/vi4z0cdn87sTCQVTxxJaWGlRlo/4AtXZHvJM9OjmPC+jba7FMn MrvH3Y6wwdV59t+f10/wdDz6bffspHv7KIMjDw87/dIgQpSvz9tD5AXbv3cQqActC7qaCANr 6TOicFNSwKHlHVc0QjXu+yu1eWkrIrQzF04Ou9nT53I6mSA3D4jZ5cSWRICcT3CHqpoFn+YW pmmvPCdwyKCwi7lZdC85JfHQmej0PqM6Q4Hl7gtJ2mR9xZUPnozOkv2X3WPDGk/0PR/YBE8V bQuGOo9yeH1+0drz5bB/1Dn9zl3qUmMwxjwsrrOOyHYMQe1IVMkWW3pP2GAv89M3UXvEi/vM coG4cheWw2USvTFPFzbJteOTsVSBbzScwbJ3+57/4b8eHSY1hBa48gj2/8ARh16M96vJ+fIE 1ibxb5ZfapVPs6TlYwchwVKrycBicZNcA6ypKgcCy3NljRmvf999qlRqycKQU65zZ50L2eo3 /vC4tcXA1N0GuWNLB1UDWo/jxPM7jRDrw+bb7mW70dd/9rB9hrlQH94kOEWVwrIsS9VbAGCf yT40ZwpFpAnvQYz3bJJXkRAW29qKWZIZRtSVbaRmrpE6ga19BLvKYWY2cYCWuVL1Fs7ZXJZg kar0mS6xmkpr1t9gdFf6sHJVZOnhEr4CCenQ0sza28IdgSvnGS2rOnzTIIKwodZBJfBZsbxH YbYJTFUQZwi3ROFgxjLUEJM0oQyjPLRrqYAqYiZNrpjFocmKd1ihu1f4XBYwMA0GcEKVc5w6 z1sxXlcLXF8kFdZDAFXgpirt5HLbUTCnYnn2ZX3cPnh/VTrr+bD/uqudyK6jAcjqDhOsrqCP rn11Q1YLc9lk+ZtE7Fsr9bO17zyftmoGUaGuvNhvwdQepM7K306t+kZ1DcjmmwtSOWPAJ7Gw 5dyvq8ntz0UpqeRwi58Kpz+pqwKX+V3tHVsoXcnz5RwFxtwJLLvCn2JzCPLu8XJUTaVje8zx a/A6QoSArd//MMDCye9GF6JJoNu/qkeGp7w02Z2Pe0YWb7judmApHT9US0iFHJ+uKsL022rs WwLdITKCV+s0QdXRBnaT5veZfmWDDEy2PrwYj81T4Ik5eZdccT2kNWSWVqIiTzuKUQREpeCy k3E8Y1KsxtGcOtWhPpoEISbrfTJjPEG1vTVVziXlK2wyvsIOKmTogLuJE1BoHQqbETxIjg9O CH1zaCIDIfGhutkn4HIRE5/h8pDwFM4iC/+tFXSjDvCiXF1fYccuYIo7krNuKXsPcZDg27dq 4fzNA4JPk+MMlwUqcAsCwSiGYOEIj3Wr39X1O/u0dAFG1fhMvbdjq6XkU7nkMFi42tB4jZU7 L7rWHOvZwTguqr6LALwVtyHVQi7ufdvAN2A/dHr04GfZqJpBc03XoedspZVTmU6dm690iYSw AX7ZDUjs3+3m9WX9BUIF3UDsmTrwi3Uon6dhooxnEAaZ7TgAiDotJzWppDnP+ilSbXxrvM7E OgftwJidqLAJPHInawEr6zAPZcrYoey8dfJG3vrNfG6TSAbtWBDnDXVp4gqHnKYe7M4GblHA ymqc3ajTTqfNtc15mcXgXmXKOE3gV8nbG/NfL/mbM13ixTstUpEkRVkXrMG14EnJVtoJBp+k IWEglBA/GM9tYe2ZxoxUSW379J8zIXDt9dkv8JYRmNwUGuB4uKGc6z4ssIBRQnIsHG5FK1Os cm2J49KN33W3RsqGnZyDFEuzYUpJbhnTjCawpNvZoSHgrJCgpFwObTY92+i87pfD7uFPY7O7 qGy3GeYTuoaxyjmOWJyNeDjgL6kkQ80qcDgNSCxshZTl1YwhzxNjF0yreqMXwt3h+z/rw9Z7 3K8ftoeOBeGdOZytwFqQETtQZIXTdgXxXbuI1drdjTItb9XBbFaiBGUIfrMuOOBdTu0QHYjk IM6ofugfrhUn08eh/c5GvQz7aoKcL9EepBrNlrnt7FdQ/alAPRJeZSLsHC0Ejc6zr36XfEYH sLvpAJQktplqxtqN5wEYWRkB783FhC6PNTKEB8aqKHy8QWUom22K5sE8FkdYwbLX4YHulinj BPdy1RRCbrzuZXArjicDueQxhx9lPNL3/wmuv2Q+x75dkDzJdNIgAXZYF5VEvAY4iabmcG3i IZXWIP2r1Ok61xAYcKIWNQpLK5qBPA+70Tam8FcDRKLax9k5L8/rw9H1QZQO9D8a78ftnwOE T5Or81Xlo+EKV1PZDhQajwKNCPEVqgCs5AkoAkXwRhaLTuV4T6Im0TKbyfjNbYBQm9RjsxcE FfDcZEbu61D5bOou40wBzlHd49V3t0ZH6LyUSOP7d7zM5qLM/RXwTy/Za6et6rRTh/XT8dFU 1Lx4/WNwo+B+gmIZ3qc+0eg+DbbMBa4pFW6r0x6i8VE13NIzYVA6ACnDwHZQEhdtREZkvStq PXRTHJdV1qv6xoAkH3KRfAgf18dv3ubb7nlY8TGiGnJ3yj9YwKhJPrrwOUtLBAzjdYhsGoxF OuCvRqdC3hGsMtAQ+GA577X7cUcybILYwo+/OSCcM5Ewld+PrKUVu0/SRWl68Mupe5IedvYm 9mLIBT5FYLP+eYR6ixNa48f6o8Ehj5NAqmAIB7+EDKGF4j3ZAXnoAUTS3xvxJbgz6DN8Q5yq kGD9/GxVFXW8UFGtN7qU35M5oe3HqqnCDFVgdC+TN65a0svZhAbjBOCQGppRAiUvL0fqZGYD xgUdRRcUtHuB5UvMYIhHKm53TvQ73KlqY9vHr2e6uLXePW0fPJiqNp34w5Vxs4jDOQCOSb8K +kIAv0sllC7s6Tagi8nNVQ/LcpNq1djp7NpVqKAbZ5ZJDXbHv87E05muvL5RYdVjA0Hn56ic vc8EM1cKzrjLDg0p3WDaPLeUaQwK1KUEHt5XbTY4RffZlPuIa7QkiSzQ4NCmgiePzz5baY06 HzxNg2SUgsKD0Az8U/tzxBECMBi0/+LvyuHZ7aE+jVpzsf7nAxjY9ePj9tFw1/tavfS22HpE +A3HB/c8VqTPoOrc8Ibx3riWBIKqOW5dW5LaiXmbSKcE3iGB+HfJRj7t6BaLqfaIz2erca+q mu1UQj+nSdpr3EBYtUrJuDtpSEJw5HiIO+st0TK8mk7AA3mHLFnREZmtWV6GMVUxeqsBWfKU 4mFFd6+r1U0ahMk7+wjlexTwvEZCmJZExzKXE7zDtSXS4cw7PFFYesRi2VANVEfVIdo7h1DJ +awEbrzzGhIm8cR3QzDP7FC1BWuLo/uSEBSFUL7qVqrM9O64Qd6x/h/ni+jutrlciNT9phpB Vp4hUit5izbQ2YXbCSZjfWL9qfLbvLOG+L4yKh01MMZyGF7EGezA+6/q/2ce2Hzve5XsesCt VjUAm/T9qXoOhD8u09F9xnIIo7H8iLJUvAjtf+sMtar/nEI7HYAhFoNhPjYbYHXqVNdEnZkY yeN7HLUQ/h8OILhPScKdXbUXa8OcdIrQFXLdpaaDFjuTWyFEvHRXFWCnqy8na5jJWSb6I576 4zFTN3K/z+kAVkbXgMqRjEeDJqvr6483eB95QwO+0AXC0rrmipVh0wJuAn5gDXxB5Yv3RsQQ 7uFQXcyqavy31328KXWKemzll+U+OFG7o07mP3hftpv163Hr6c+wdXEVPFGu87fVnh63m5ft g1W6qGd1XBQLWO9ieoXhOp+yqznoo5bZQtFgiZvEqmzU51Tl9C0Tphu02gbBJuAGOHgS+Zzh sYszrlWDVtKtCblZKkUuy5jL83g5mdkl3+Bydrkqg0woFOjmGoMiSe5dmedU3pzP5MVk6pRL tdsCkT9mjUFtx0IWOdNprCXvffxs0nNUgCUe82kMRUikykfknWSBvLmezEiMex5cxrObifv9 l4OaOa2HDfcU4C5HPv1paPxoOvZ5SENidnczwYKsKKFX55dWfB7I6dW1E2nLXhjUIlb6K8JV KYOQjWiBZUZSjl0IndUKpar6MXhBidOv2lycwcDdzjAVUWPbJnEXnJDV1fXHywH85pyuruwD 1nAeqPL6JsqYxBhVEzE2nUwu7Hi0t/mqM3777/ro8afjy+H1u/mA9fhtfQCN8aIza5rOe4SY TGuSze5Z/9PuKPx/jMaeXf2OOhnVjVxEJzmyeKAPdEvoowfmByzvYfto/oQTch9LUJg9e9rV ft+YouUijYQTzNvKo4rcqeRNmDr8OkH3EiXC+Zw1JzwwfflopYlKKyVnhtfKupE9s169kGkh 9n4Fvv71H+9l/bz9j0eDM7jd34ZaXNp/jiLKKxjSxSRzhG6OwGjU22irtJzHqDHwb11CQ/PQ hiAW83mvhcnAJSVpSeR9SgcCYPigGgE79nguM17xuLdHqf/e1Qg85j78HzqADHcGcP1XlXSP 5dipZJ61i3VJjt6+e/PG4s58Pjw2Z9DnehCVeUDoEBplEOYP9g0INhJ3NXgSFwR9MJiot3rZ +GLAKSQgcf6eh9Q0mnOuLSQ6IeML3USZ52gjpqYx37z15srcMqMGyRD7wyRJMJT2xHmaSfUX PwKmu0FxJz3QfdrgJaPzm7c9sQKgCjIdQoZEF5dXDsz8QQ1gaORATe+zZTr8po/A+T3su67h 9QOVo39ooKYzT06XQzm4EMRtL2pYFySm5K04irMM9KBD3IwM7Wi2oamLLrpzbs5y09XaUws9 yqr/WBdf8T4NvRR4lFnOpX0G3a2lW4mlMi3lvQcO2AIUVs6zkTIWEBhXewwpU5LJSGD9OIBV ETfVlCXXvczD85krwIea0HbQOhLoYi0aM5ocrnNsWncx2IMTPvLkAKdF05lAf87gAGxBdWZt 4OUnTJs5FK42cFCRHGFjwJy4UEMK26D9b2Vf0tw2sqz7VxS9eHFOxOnTBDgvvAABkISFSSiA pLRBqGXaVrQtOTS8231//cuswlBDVlFv4YGZH2oesqpyiDLhDU/rWK61QacIx97rWE0Sb4nr Wy0NQexvkKuiqPdoNsNINz0jfhuHStrClkghwT4o+phpWZLKwh1bnH76++/hqzqEz4wnTomJ StzyJERaqQogeJTc8BnG8+hlkCSO4ytvup5d/Wv7+HI+wp9/U9LXNqniI/yhxS9XIsoBjxD+ fr2/WYWuJC8baRzwnyBzR0ynbbd4BZGK+4rx6MN5aBQBKxl9OOIIoV92nZGvmwKSBajTeS30 U4an6x9oDPqIJk1f75UzaPdR0bBYMbZT6dBHQXOycllYxXHenj55E3/mxtx+Wi5WKuRzcavd YQh6fNAaQ+OK9V3qHJsKmPgAptmmEKpgQ0Y9DY7W5Vx7vyMhq9XYCBpnTSdcX28oXfoBcFN7 E9WmTmFZTq0SxvcsriAGTJiWbOl51IltwETcFCxKqsVqTlQxvYZqkIWMy/X05ExavURWyHzI x3TCdRgsZh59LSaDVjNv5cpeTAiqTtlq6k8tjOmULBScl5fTOe0qZQSF1MY4ssvK8z0yeZYf WFseKyC4UsjjY62oZfeMooQDUaFos41pi7dDMt9dkUbbBPYT4ZrKlTeri2NwVP3KSUz8P56g nEk0uW00QRF4Au4SZGVMVR7WvJllKE1hftIPZyMo89u6aML9hcavj+lsMqVn7OnSbA+DEibi ifx4E9JXSOPAqVGjnbwrkhZb5XCBBFi8KaU6wTNU1jg1vA3KQCeC7JPr9yUqB//QRxgVxjL6 vUHADux0OgVG9t0yoqUJh4agrJOQWfMeNhmGDlwdEO5Ii5avOwCODrGP2btAKL0rtNWqzFaL yaktckXWE9wgWnqzk7n9CbpeLRXCr3NhTPGSmUlsssCz3Ix2m+j0NIFzUV2Tz4C9QHFaLhfz yVB6LQ3BX0/hOI4d4UpntV4vO5ghS2SwkM8nOplvEps4LhXri5EVxWERqfqxEveQbNSnUlUg ONWf1+aXcAJtUq4Da1bIgNYNLtdmC+ojp2SLue+tPgQOTqUPg6WMnYNVrEIfy73DupsDUIvJ rEOZzdLwf6xfl0GaBWwsDiHdhtv5ZDGdwhLWOAoLsNV8Sd1kd/xjZhkQyOkLr3bT9Woy77ZV chRVBfqLxstEejBFwXoyn4sJ4Cg6whZTE6ZN61M6nRmydEfW11fBTG6Yv1jbuy7MgulkYkye jqy+FXVFrQ4+rkhiiBNnEQ5YzHuAq9YcufwAEhUnhHmgq4Eq4Y7dNZRY6C9PJ+t4rrJkpqlm cZKqn48U2Ig0ynYyNSl8lyw0uh91Lwk63vMMiq9TphODMtMp83l/vNnfv3zhxg/JH8WVfvWs Fo3/xL/1x2jBgPMjLaEIdppsQFjQU6uCo5lS91KiyRZ6dszHWxUHIqhCi3zS8cuuRNp3RVqG wGS0TmbXCk0+Sy6UUJxCLBDu1oMKfbALslh9/u8pbc7gLEjQU+VBjOrR8Y2IuGkQVxzf71/u H+AQb74l1+qN0YFuczQoXcMuVN/S81S8Ehr8nhuBcMNvq9Fipx+c7PzyeP/D1BkVkqXQ7gg1 o1DBWvmqcCIe3Z+ffueMV5Euf3Mi7nm6NOyKeB2AOvzqGEKtUockmTMFYA81tYxlQDVBVaeK 7qfG4K9WReoA5BX/P5P9EPS12MPCSOv5dIg9o3QItfZSXZKPRGvZWLJVPFgpZOkrvTRwGqiT G2e/hGF+Ip+6er63SBhuBWSpB7ado++3Hb9Osk1cRYHFF3iH6mxz7OXr1sjPdbDDTjOKofEd bWVBtpvbMtAt5sgv8SsXLDsxmNkXQJ0yQ8kuJwdLqgHSClZRLY/7QVc556c4EXBdlYxfh7Ga xyd04RIluySEpaoihrMOcTQ9A+GMvJDoqxrn7Z03nZOfZlP75oPfHuJNc7Exi6NzhYNx6swj STdxgBI8SzTV50EHXlnBtfrl4iE9Uqxo83YfpZI0xbXNtD2o83Cd5NRjQJc4d1ci2/RJ9LCu eJrqRguEztU+RRN+sD8N6mGcKh8V0tJcx8pSu3/udMLs4zAps6QVwQLkYwhS8SnaeN0THNTz aW1vQRwiAmPwl5dqG8jPzpwtP5MIAiyyGqn3dKUXC8XuYqvExwhYifbi13h5gpiN5ZE+L8MM 18qLwC7BTU3CxuJsqIoOqeyPhO/3zhKbm8k82MUgfEPmN9nqmQZNwLMgb2e0Q7qRPZPkchZW fncx09sG2vKX3s3iQxbT93jAurbx0HbCaqZch/BHdoDGCQnTdr2OasLwyo3LSTQrAUoeqxKa zM+bQ0FfECHqACXDl+XTrZk6q6fTu9Kf2Tn6/gs7THprU54yxd/hwMTHC6w4DazWaOk52LuL 5yE/JJ7slFMx1JNfskJjFCpZ+MfSaDzqgPpmBeSMtNFCTmcJj7KzmlKQ7grF83FPLMNALv5w YEALZ0Ic5pkkp/k+8o1pw6sv/D/+ifbRnVHYv34+v779+Ofq/PPP85cv5y9Xf3So30EER2ux f+sZCFmCPuEjm09/O7u2eF7nzNPJYgDHuwbfle2BnDrEdZGTdyTIrsKM1RutF2GgGdfKyCBM TmRujHFWuP8F/f1bY7NUc8tKwyTtJTWlXjqx1jreagKGzMvig68nGZ9u84LNLZ+oL3U9pe3D /H02PNmJUbfbgygfWVxc8BUmo89WgneCTdl6eY+IopxarJ6Q/flupvl0l5jXcVamkV5kOAT5 lstVnMX1Yu7IL6uXC0tAAs4+LGYn1+cnyxUZrrRio7XyC/62Z2fbbFg580gaiQMHVhrrECwz mDf2RMvcXtjyZJ/PQpvcclhFQJXYLt7x+Wga+jNLIArO37cZLKqWwxtHJFlt0ccW7GprZ5aW 0FmcaXk/4iyYq1vabGzk0xERBL+xudrl7CZfgJjnH+2NCsLRTQPCln2i2m3LBm67KXUXThKk yZNynzhy6AGtvYHR4WZQu7rvmJESNHDECVUfxafUXqBTWq4dU64KVb3LzgMXCCHodBkQf7AM t+T7L/e/uGRimnLxySDseCylroOCwcFgcFZWvH2HpMbEpV1bTzhLTyGscKS8ZJUb5Lz5HqU3 GCd26vzWphE6kbgkWbc4BKAwo24qnTKl6rlFltEG8FQS0cIoZ0gZ/U70cvVRJY8H4JLawlmZ JSoKjioZy/jTehtUZGxZ+eQFPxRZUVzRs0SzXR7JPx7RQEHyz4vq6SBByidQpvwwlWnzukSG eSQCWpeBKeJiSnAcQn3Tax4HTk5RYvKLXbKfJRAxhCkYSgxkKbuw188vckEFty67QAUaI37i DuHK/S2G/EUVtjyuMUQ0emzgvmpZHWTo0uHq7RlyO1/BxIGpODhF56m+/lc2HDEzG1oLZL66 kv36dB6LO0Y7xO8cP8hkrTgJD/R22+Rh76NEygL+R2chGNJxkceEE3nTrd6VK2BTLSiMDsAX ZeWpe+CATA4dRu9KAyiz+ILr+JvMW1mi6vSQKFjNJ23ZlNTb0whaTxY+VUwQ2LyVZZXuMVlY +lNmiXbVg6q7gBbdJAB9YzcCcncKDIYjeWk0AE7efHJSBwWn19mWIIuXdapVIKOYNh0bCosv 32aSRRinRU0labtqHIcav+HZXRgwHYoOoaSjLJav/eAKM3/lXeh7Dpq6s+PnR2N5MmDh7S6H Y6F2lDdgOS2Gj+zyclY58z+QT3kRg/PfPf02cQVyUbvZzSw2JkN2jhPIMCBPgT+/DFleKHR5 s5pYQvApmJUbk5Q3s4klSqGEuZgXxywvYhYTz73CgCSxWlg0cmXM+hImytYLzz2kMZ3ThTLz vCxqtApm+QHM+gN52SzZFYy7DW9CNrM42BghcILkopuuEWmBss0HoCxcehd2MhZll7oXIKuZ u+egEWyaeRLEvwARtznuVPCsfGFCA2YxI98xB8S+LbchtWEAWdw0udcDQFWrYDkN3L3a45Yz d8VH3MfyXVpC65m4j5bP3b0j7sLCPAIvyCUjcPNRYPjRrOMPprh0z9oR516NB9z6gwW0XBub uA8OhvUHB8OF1W7EXZimEvCjNbmwwkjAD6f4wRG7/uiIXV9YKEfgh/t5fbmMjhDBOuzChj/A Lo9WDKcZXK6EI6KtAbs8VB1RWQ3Yh2pqi8qqwyxRWXWYJUCqAXOLAwJmCZA6bD8lmn2E69Wl jVdcsfruHu1QF/q9u46duYvfoT6S1v7SJsRRWeldaP86aZOCG6I6Nuz+mpXasocr2DRyD4gB CCenDyJZGrk3CTlN9wAakSeLeiZRoYUlJKuJ9NwLp4S8MKXlciod3IUu+PJ4X5//uvr1+PTw 9kLoScZJXqNpj3lMF0RTgq79pSWY+ghZLi6sHRziHrZZvfIuHKoR4rvHKxbXEg58hCyWF/Yn hFyQKxCyvlQWqPSlsqy85aWmW3mri5C5R4Wolwo7XS/lC3DrSCGuw4pwnwc70iPEkAEqQATm oIKj1TKdEpdCnLGaUyMuvmmSNNlUSUP5eu0iOqCup4iKyx+NJSNz/C0CUqkE7i2KG9ynSZbU n+ae3yOKrfYY3X+SVDedc8ChlOKi1HrbwkvDbhkZZYEzR6ercrSRn/e/fp2/XPF0iccX/uUS jk3cn78taaExIZdWkO2aEhK/Ze5KQctZpoSwaoFUNnFV3ZYJnBTpNzthX0XoTpiI0445dDAE TGhZ2AGdd0gHwG6qLOy9jkG5MZozThzPsgJBDVyh3FDjPxNvYqQ63M13b+P21HeV3lEyd58e IyPxpCBDlyIrLXZJeAiNT1yX4D3A6h+WA7LNasGW1sbN4vwOVnMj46wMVzaVBgEwVCIU7ilU 5zHqQBiZ8Ne3yx1p0yoQI157rNW4Fj1ZsUAEWTCPfFjyig0VTVyAkuJkFJzl+PhVxbSKi4A4 qwRrYHs6kuJcv3aFqnYeJ9vf6ke2Z5G+BYLNVhaFAs53vuVzxAmnSMscE168xzv4qWNdunN8 GKBjIktUZMcCPujDcer571/3T18UaUwkPrh60DIVdNyEHCWLckeddsfWeK5XpgY6GHD1Cgf4 1jlchsF6Pj1pE66jqi4iR87SXPyEGaajA+oyCf2VRQunH19rvSbSY7/WA2Lr3UYf6BnfLG5Q JXfuHSyCanrZkXIoInYWbuOptY6pPtYttKvlfEFp0XVdpIpeQ7+hGbXZ0vx9zzr5VWcHomGF OwOdijbGa2If6xi02CsQN9nJuVIIA2JbGTvLYa08x2w1nRPE9VqxhCO6XO3x3Q7W1qCWzThE gxahElaVR1rio8j7/X8eO42X7P71TRPcjl6nKtJGzJ+t6GYZQbTrcjkR75jJpegZumLpyGG7 hJwVRLnl+rAf9/9X1nWHBIWeTr2PK7UIgs6Es2O5BIKBFZ/Q5y0VQzlWURDelMiXf7qwMHzL F8pDtfKF6mtDZdHHYBVDOZRVEStbBnPSH6yMWK6spVuuKJFIqXM8mVlaI/aUw6E6BKQTGo9U Hhyo9UPw0PO17KZ6JHZ6I8qBT+KiMG89FehAm9Qv43YxxkQdLFHcJdaOfzoH/1sHmrttCSM0 HMSPiwVL69Bfz0kFGgmFJ3Z/asuwK8/FvNC7TV3k9BFIBgqp74MwslHpcjo0Y2XcHTXwq5hH 0cLompKZjCiByqPLys32iXTRYXZGpy6+Z01ZprdmuoJu9SypgPbHTPaZVEaB4EsTkO9YOpUH AtRom6CGhfx28Oyi2Brt0W9dxUWVieV5pv8+COvVejanrBZ6SHj0J97czBoXmMWEpqtrksJx l4dDqInQA9iGUXVlG/oVuv9sc4M9T3V9jwDxyFsqQoTG8S0c3yNbv+8Zslg9qHdJQpSrh3Cv NbJPiJ6BMiA/K2t0fdsfE+L+RZ3lSevpYk5tGj1AeIkteLG82UJ23yoVuJczqaqsVyYDemfm zclmRJavPkgQiKV8nygx5iJVggFtajJYtpnOllQxOv85VDn6wbALml0slvKZZ46V3sOZmWtV wwyck6Ma1qupqzuakHmTiU9UMVqv13Npb9cWH/6zPchuTgWp06kWN5zCH8L9GxxdqRvIwXN9 tJx5lMMcBaDIOCMn8ybkzY2KmNs/po8NKoa+pFQwZDvLCG8pTTaJsfZnZFiAIKqXmpEIifCs Hy9oryQSYjmhioQMusGsenojIrTcpA2IU9JuA4zGkddVkdLZ6JfLOqA+lWS1MYJreaBt9gUi hL+CBONLV4VZd27BWsdZSbDYgg7fgLEUnDUeDubGp+gN9UQfY3rIFvW55pSsKSNW/nZnFnm7 nE+Xc0blvK3hINfUQR2T7uU71C6deyuWUQkAy58w6lJ6QMDuHpCfLhc2nwIdQNjs0bJjD9on +4VHHul7RLLJgpgsPHDK2OYOpYPUK2qx7tmfw5lvNjgIWZXn+8Sk4v7PdzFVGNdb2IDhuwI5 hgRrafUeqOAsiiwSBvZR11hGhC9LcwrDJ9qEM2a2LxZUW3EGOb9RalhMLC+tCkhVqKUQC3JD QZblDVaCTL2lc+hhVJKF75l144zp2sKgxhRnzMmVh7PWrmEqiromGjkLy+mEKmEdLuR9f8DH +db3NlmoSwJDr2WLKUVd0lRqQGTLJTnCM4ve3giwaHJJAPq1WwK4xxQAXO2cZmuyh4Du2oOB TbYOnOWnRB9wxozoM8EgmrQMV8vpgiwasma+q1J5HYqbuYTVqg+ajh/WMImmVOLIWi6p+2UJ Aac8YrwjYz0hat9p9pPZsWBqUXLpIUUYtuXK4ox0bJPtar6WGrjMeiM/HWlxACsLfD41yDcx qozFJgP2pDbcbktGsHJWNlWblIzkVtO5T81kYKDRAMUo2VwE1tI5LF2svKllGvpw1qRUQpQt Zkkuqx1r9E3qTma6ovaYbvWnVie+oFM1Ao4/WU5t6yfwnPudWEBXdGGms9mMWlrhmLqQ/awP g+YUw8ZEfAGnw9lkRu2ewJlPF0tiw2jCaK24zJQZ/oSs8CkqY480tOsRdykUkEgUXZOCREYl Kmtp8L3BOQ/ZvvZc6wLwqbEM5OnfJDkkBYUoi2GLdq1ucRZ6swmx/ALD9yyMBd5lEcXIWDhb Zg7OmuhbwdsILSqdF+7nC+4WLiN3W873bR9OFwSjrhmMdfIYkmWLCzJVEIWev4pWpKf6EcSW K58Y+AG03Mon807ywJ+4ZDUEqA7wBvqUXPbqcDmjcqr3WTh3CW11VnoTn/wUOW4JgkNcjQMA LZahzHEeIAEw94gBeag93yNa4LiaLpdT4kCIjJUXUYVA1tpzHbo5Qg7xqDBIMYBzXLMdACms rjW5xwrmggxRJGFgGuy3ZKmAE5Ms7WGXCzmyD/mOgIGS6oR1/oU1XpzF1S7O0dlo93Qhguu0 mRKht4fbV8YeUdBvHz0bI9ygf/cWQyzRl9U9NIqFw5tdgdHq4rI9Jox+MKG+2OL1CMYQp0yA qQ/QySxeZahO0HqkPUkS+rHyInIT5Dv+l6OYRvE6fhQftlV8I/W8kUWcoaCSXOg0i+okdxRN JI6+gjoymSzwV1nmhFxPnWxWxkHlRFRFeM2jPjtB4aVUEADj312a66S6PhZF5ARFRa8CYAEE wIkCdxrc8p6CdAAMPTF2iBQNEz2V/FTc/3JmEJbJVZLX09nkRGCGd203To2aqbN5OpuX5/sv D88/yUy6wncP1M4WQA3XnF2EMEu3dgW1lsYS8dRR6DppWRE6c7ucnnDQfP/z9f3pm6sbbBCp OLBSFFRpeDI37/c/oNp0L3R5WDFjJncnf71YXpigFTkdOrbp/bKnGL7aBkZeHIPboqHf7geU 8PbJnQu2cY5bCbXbD3CMxMM9lEDC8oY2AAyNdN5Wx/u3h+9fnr9dlS/nt8ef5+f3t6vdMzTT 07OsCzekUlZxlwku1kStVQDs4SnZBhosL0j1ZBu8RM+m7szlHa+HqzW2Re9ixbYm+lUhSznJ 1eNPB/6Asi598/llzGL6AcyFvIQKHIHoV9nhllCq7/A1qmdPFmt3FnyenlyZdFoOVA6df2dn BndJwiM0OEF9DAcnqNuXpuha1g1k2dpfTC6A6rVXZXh0v4xjQba+kKfQB5+5QZ05gxu0rY9R PfEuFKvzaefquOhIdpoIwOZOHT0DuhFlfppNJqtLY5z7xXSDQMKq6guYKp/XC+9CbqzJTxfS 6T0TO1qtD35DNR0q10LbnaDA4YVpxXXlL2GW/qWOwDeHi70lVDj8C9mBsAvLTWRxOJidlk1a 6vy++TFuEbnEFCf0Lk9/hV4RUSShWxKtTy60D3cf6IRwVx22OmUxK/J2d9psLjQfx12ARElQ x9cXhvvgHd4J6+xyLi07acCWF2ZFnMcY49vWAD2/ugtskM5wzJnNYLDqLkwded7FVRKlMTci nONAJgeU0K5HpjyUQMye8TltqWLn68nF59ZsLsByMl055s6ujEL7MCyxSkadRj46gF3Y6ozR AgLf0yvN9tb0miwlm1gYTLz/eHv8+v70gA7v+pgxholxto00X+FI6ZUPlQVgG3Vhc3ZlEFmC +eG3bLr0qEu3ninfxgvHiqblBscGtb9aTgw3kioI9uy2YXQ4CQHAQHjbND7BAqLVkrP2aRiF et4wEObrCamWyNm9yYiWIA/PRtFUl+JI1y1BRpoRSBG7CC1wyev9gSsr2g1E1Wh3IFu0FUa+ xRAaewul2Smt4oHfd4I1/Rw4ALSyDu79dNpULz5Qbd6RkC3cHsG6awt9gqAdrO/oKpK1O4tv S94ZoccFAHtNstJf+Gu9hBguJa1cMwR25zmIBBpEAuyTxQwWAmxuPXVgzecnW6zPfY3+ZFkS SnfaSIM6aMZKmFZywxakuRgyTfsmpHLdWTJQwsjV+pZShBaD/eTN5ktaI6QDcFnH1vqGNutI XS2I3HgoSldiq9nUSGy1niyJtFZr3zYZu2CWREqygi0n1ovpQi9/b/wv0/qzn0pGUU2l9ErL 0vraR1YMopCgGoFTMZHMatHLtwCnYzVerno+mdJvOpwdzuv5ytYR6JZSa6buRGDsRXHo3hpY MlsuTjYvxBxxfbuCMai8TAWb03xibjryV53dnbhBq7PHh5fn84/zw9vL89Pjw+sV5/OLSR5R nbi2QMCwyvf3bB9PyNiT0bt3FVIqgxzQGwlLNDiFBdl0CitJzcLA3P/Scrq2+KQR7NVyRasO damnGWUqzcdX77S0l/1LtvAmqo45V+qekCq6grU0lhNBt5gqjoC1bTnp9ciNdBNe26ltnez4 84Wx0/aRXd0lWi2sKY9WmybVp6mmnAEcWLCn0mNmf+zVbz05uuMFTUQ+v/SRYE2R8Zh6/nJK MNJsOp9qC6thpsqJ3NRU+7hX4dSEKmHTSxKt4pPFFRYvfDb3JrTM07Mt5syCjQu+pRc501i8 gDqzmHJ37KnnEj30h9aRZo4AybBWWcWOsxXpTYOvucU+Ayl3iadX/cueB2KefWyPCThA3K0V TB/ugPwCimPsMh2rcU+yHTt6/8nKJ9f7IApQX5NaqfprymGS9DbJrlPVeInS6WLJWY7Bo202 aSNim5zgqH4o0lqoNhsADEPWiHB1rMlk+7MRg8+z/HVWRhHFAQFtp61CNArFOGqYjyA8N67U lVBl6hZtFCyaTy1OYCVQDv9Q7xASRDtqSpz+mEYk3I15Z8rE6U/qXO14o3IWZIGGow7F8eUd QON4dCW2QT6fzueUhKqBVqo94Mi1eK2RIqDzMwpVMsE5zKdkuROWrqcTsoFQR9JfegHFkzcC orgoryyp2a9BfNvnqyV5ElIhdL8S27/EFFudO2nALJYLKm08JM1XNpbhNULhrhYz2rpKQy0o kUjFaIcgjTmnd04NRe6QOmZlzYaf6i7nYzvkaSBFQVrn+XR7h6UHzW0ZQVk5n5Fe3WTIajVf k0kDZ3GiOTfLtW/rYzgrWnwVqiCLvz8VNL+05oqjqbOKZkACibdJSF8mEiIMYH+wVNZhkCuB ts1d7E1sSRxgubP4CdVQZNQwDbO2ZXO0BHIcEPwtoyqzvTOTwY85NTA4s2Gb9qDESB0B2kFa YpjH6ZFp2rVSoO7Y7Cw9S3cgU9u6Qsh0m6JAryeXsuPYQxVvNw2tyadjy+PlNLn02x4yMhCp BISqThbklgSslYgCSrOWOcVCvXMPpiTdLv1h2FkmBPnKzZHKg0WKFCakozPN86bkqigdjWne mhZRzKOqwtOOpRJPHELpFnK6HpMEZPROeQEjDkzOpjbPTtoUTINNsqHiQlWhdhauMA6VZP6a JmqU60255TTu5YKcWxgeKwRmpaywSdXm8cAivgNAFc57wFgATl+Q9M+HkKSzIr+lGUF+W0gc uXSonlpS5ZNBGRxTrjfRJdgpI1MaAYkwlafKUYVZ5kyfN/AhCUnL3TDWO5S/FHN6FVJUdC6i xKfmSeyXU9WxDlLFu3RAO/REgNXbJ88oyFiT71o2p73LcUxNB/8TPFsscuTanQmKqnbVNN4f dy/3v77jNSYVkjY7tUnZHKbGPatQEa0yKX7zqBEqkTl9+3L/83z15/vXr+eXTklMumbdbtow i9A+eOwCoOVFnWxvZZL0/6TKeNxVqFmkfBXCn22SplUc1gYjLMpb+CowGEkG5/dNmqifsFtG p4UMMi1kyGkNDYmlghZMdnkb59AbVCjmPsdCtnHbYqDtbVxVcdTK3pSAvgnC6zTZ7dWy4arU xSpWk8FwjFisOsl3/a240jHf+ziDhCorthPh11Xmw1ixsYKKfoXgXcKdINjYuw39bgCs8lBR qy+2ohfxJ0GtA/gzsi012EDmFn9qmNcp8Ba03I3feuRLG5akD2Pa6o/X2CGZZa3AD6eUuIOt vMna3akG8XuiJde7R7ElGQX0fQmwulsqdRzF0C95kcVaNpuqCCK2j2PqIR9LnmRlqs5kxqA/ 1JMpUFGhzXKVi5tHoses7RYXci0ReuT3D3/9ePz2/e3q/1xBc/eXfkZIReDBYA4Y63YRaasH jhRGt9/w+3lm+WrkD1foo7Aw8LTThsEXelNpHFEJj5oXFAsOpXaW6hh0ZDq9K0nFth/nlHov ppPA0iSKtb/EKVdz2beQlCeGgq/I5KSXQINnir8jT39AlYpxgIZdWnzYjrBNBPI+7bxoaO4q PIV5TmfT3VO7mzGO5CvsC+N5zCUtdgU5V4ytvc+TFU2uGsHlkbG775PInDz7RPkOfo6Oxeoq znc1dVgGWBUc5Q8bTJ0E6r7c2a/zw+P9D14cYmfCL4JZHYeWfNsgrOQInwOp3W71mgRlSYZ9 5LwGNvtUTWcTp9dJrtLCPVoC67QEfunEolHey5CWBWGQpjqQy296WcPbsooZJQEjF5p7V+RV wpTle6S2pPNG/DLOGNEycQryOLWAcebddayVeRdnm6QyhspuW9kS2aVFlRSqrwGkQ9J10Vh7 9/o21r84Bin95oDMQxIfQYaXbR147rcVN3VTqQlqh+vJJzUtkiDvc7CpKE+AyKuPSb4PtByu 4xyDjdaqc3DkpCG3qrQk1i8VCikvDrQpXsQd0uMcUXPvqfijlI+8PV0dCEiummyTxmUQ+a3F VSWiduvZxMU/gvyQMvsgBBE6CTMYDUbrZ9C5VUGJz4J7u4U9WqsmyM584GtzLQmrAk1QjCxA JI2rmHLmztlNWid8SKrp5XWipwTHrfjakgxscmgDBaNe2vElomh7+YO4DtLbXFvKSlRvDo3B 0JFBzrJl3wGIQ4TMFklTjDgypmrPCxP63M4xaYACP0xA+o2YYyo4Q9GCCbJZkGjNqrH5KdvO R/VqOG06UqjjwLZMAQ9GLuxPMVMbBvIs00YjVpkxJnZVHOcBS2zLBMuCqv5c3KqJyVRjZNTJ odCzgRWQ0S7kOHcPi05mfLOvGlYLD9eWDxvcx9uSTdUSHJMkK+pYJZ6SPCtU0l1cFWrFegqx 59zdRrBRW+e6sGVv981G6whB7wLZiF/GRp/qBuS9dhchbAwBB1SBaLwk8cNWk2YUL/nKZz1D Jvalx2eCYh8mLZ7S4cwobgoUqQkQxD3OcG6SdQePFYtvYDsniPoZDTDtJi3Ca4IE62ReVOzT ahiKEQaWCOQLMwSjj91eZIPff7DoD0Re7Z9f367C56e3l+cfP/DIZmi2Z6HQtJArikRu8bS3 qJIAnzrwygXKMBiNehMIZBbtE5PCb14iEL/0QnBmghtCjkb/gLCWx3njzWt5tBQVrwmyMNnq me8ZHaSCd44jXnYGQlydhNTWk8fHfu3u92P4JU62FK3V9lOJwzdCblyjsTcVbig5SKft/ogO VfMdF1f42ECjW8O6gX8mKSDL5CCoPV99wxP0fDrx52v6ylMgYJWmLIwFk00XmuWEoKODG+q4 K6oWZoupvzK+4nTLyywH1E0FcjeM6TxxlJhfIFB3SSPXN/IWtw6OjxSvegNx7estjdSJ6ouZ 0x1P05wvQpPQdzkcYFFSEZmiButMLwkQ50ahy/mccAg08FT3OiPZUXLkkz5iO+5qPqESXa1I XYyxMeZmI3Z0Z1sgZjE1v7U+gImvjpnxhcvLmBiwka/oVoia1dO56sdGTAlx+2RLqg4DfK40 PqvTcL72yDtHMawIxZieYVFDGcb7/G/jq6L2yWtYkaSpms/p13XkL9bmnErY1NumU29Ni6Ey RgvXpS1yV1+fX67+/PH49Ne/vH9fwf59Ve02V53ngXcMlkLJHFf/GqW0f2vL5AZl10yrhxlg SlQ7PWlRrWQuKh5q6QiNcMscw0VjqX8waoUr5dllU4+7hhvao355/PbNXPVr2Cx2yluFTBbq pBZeAVvMvqgt3Chh1xZWVkcWzj4GwWYTB7ZEieOSwg/LxsIJQhDTk/rWwtYvKNWqdJ4XVFmY t+zjr7f7P3+cX6/eRPOOwyo/v319/PEG/3t4fvr6+O3qX9gLb/cv385v+pgaWrsKcpbEubV6 QabFQlTYJXqFsC4TAwivC/XBNTQTKrSPvCAMQYxINkkqmq6/Ebz/6/0X1uv1+cf56vXX+fzw XXGGQiP6VNFWXESzHN+UgcTFGqOFQeZDfZbnX6hJLFuH3OYhPg+qLo2PnE4uGk2Xktk+gtFm 6AZIf/bseCxOtyhiK4fujgeD1nKc0co+tGpzwveVNFDiceyj2WxJKlQlGZolh0mi3QfU3uJa fe8ogwoPJzgSSNGL0zuREF/TmaI3LbgihEjH++036ZV7H1T8zgJdhVHtKAOUxVBicHmW7B9b mbuP5fTwwUy4Sq+oG1hkq9NZUHAbasi8D1FJXQgc9gWr+VdjIwka3l2x7oQIM2gXhMP04PZJ r89f3672//w6v/x+uPr2foZDmHx07bXkL0D7PHdVfKvor7E62Il35L6RCrylVtqcU6xK9ANb LG18jCd3qFzyyZ/MVg4YiAcycmJkmSUsdPROh0pY0IP0aoAgli5VpW2JYbFPkRGUgqnElzWu R/LK8+kcVx6tUCsj6KPHgMimF4odZGUKjZYUaBcPTWOvgECWoT9dINCoycBfTDu+nhdMBdo2 VeZTbREF4YSS1gc28xYZ1W3Amazc1eIf05/aQmxKX16GLGbOotcgjpMlBwZppS/zZ0YncPKc Ji8t2fi0rNsjsmzqB9S1UwfYpnNZhbAfDRj/Lyk8v12RvCSpitZbGLwER23iT65DorTh4oSO PahzVL8ElOHCN5sliG48f2OQc+DU6NNhbk7MjlfQjCyxM7xFRPHSYFOGlpkBEzWgI4uOgCiw xIEcIbRLxpHfEKXmtzk3U4PO5j41LSCVMAkur7Irf252AxDNsYnElmyVa/EvSGwfWpWsjU4x aroDq6Lp9KRG0U5seUKbzpASg6cvL8+PXxQ1uI6k7Zkg3wTym8+OtdtyF6DUo1z15gkc6jA+ ClHpbj/molIlu8voGXtZLa4n9geXIY+BYXN2NvCLEk8+jpL00dWMb6uAuvXsuYdkU+kGeEPl qiTaxVFb7m+dpcPg9dSrPXqROSRRXOgGtL37mUO4T+gLVgXRZpS/xN3961/nN0r9UeOMqZ6S FIP/oFLhlpqg2yROI6xRFB8UwTzD206sKzRKY7etRJmwjenDR7iHcRIP2k2WROI0DfLi5I6X XqCbqFPhkdEN9qjnEqbSyRt+QH1wDCmxXjlQCK4dfqzvkZVJjo8PRquHP54f/rpiz+8vD6Se Yt9xdkvVwbeQHdL7SHMgBrdSDsyxDcqNA7Ct66xCr3J2SHIqZ6eTA8AVkhcOQHFMHdwqcrWD 8CJk5wtvYHb+oV6hiwY7oPf9Zkf0fgPtCBg7DBXChTsIdK9An7B69VVXZsLBl6O1T8zB5c/W vqu6MKyr2NXdOW9SbvtaXq5zmcCWAiuUReNcgOqknfr0W3eHyC3OtDt2b/ztwmQlo2WSgJfA ahEeVJlgt6xcTegDCmAOywxvOPUnLanj0EFUmVgcqnEuo5l9JTvVfJtN2JalMF8z10Q75ejX rSRGSD+dbln/eItxG9owUzZj7p/ZPhe509wPppzVjXp8EpX8jBuh3kx9EvuuI0SpdKqeYu/H roDRQZe3/7K2zMd46HmbxYMoNIqXQW2Ld9vPhBP9qLZfTXEByir6eDywLQfsjl/SNRDFRxMJ bg9QO+eq8K5oGZ8h9InnXCm5shL3WQ7QxUyL1NwJHuTmOLwzB0m6KZS3JSx6BjTqnq4TANps 38ifyA5fqyNMCP37cYT0TtYtOQRpjT7UMq1M+2S6gPXemuw+Wfi+g99Vk6sjkACuZx2UIWsT S3+ghIDeA+15wEyFc9iNHSF8/WRsZwXgdLZ+zssIxVPKx8Wc6vzz+e386+X5gfLPTXDFV79+ vn4zX92rEko4Tnb+U+S9wzcmOwcJnyRNZTX9YfFAJeNjUo0+mJ7fn74cMQj6aAMkGEV49S/2 z+vb+edV8XQVfn/89W+8s394/Pr4IGmMKFJNmbVRAd2dm1f2wc8fz9/gS/YcUkKisOIKg/wQ 2ORgDkiv4X8Ba2y+qzpnpujkPcm39C48gOjiarg4/hgus2TanzyJ+ouGwYeQL1q7DN0Vdr5H lQkvvJGiyG+11JQwTHc7roNKPyAS6sttFk9eJtceL6SuaqXz2bYyRsTg1d8yJPpzg6FzO85Y SLmLQkCWncxBhP89lX9sX87n14f7H+erm+cXOHRainHTJGHYxvkuyakTbVQGIGDCD1akireb S1mIp8L/ZidbxrgV7Mrw4F8af7wDMEYH2QhGFkJ3Dk4xf/9tzVqccW6ynfMMlJcxmSWRuHgF OX95vK/Pf1kXgW4Rt67wMLuqINxavA8DgHvZPFYBPd4RwcISRAMrO8sMbv8uQxVeDdNgG0G4 SOPzfZBHcCiyby+7OE9aS5AZAWAbWjAT9tRpSO+epM8ElcuyCBF2wDHMGbMvE2QbqEO0k0+J OTTIJbtK0bcb6B+YAC4VYx7xA09xIKV0jqHQ1KNMHesKx0//P/B0xzT8CGwukXx8nB5/PD5Z J2EXNuAQNmSLEx+rJbrTjSL6h/gP7eyD1Jn1cYl6kaH7SQXQ6CMY8ZgYXKG1LfIoxoGvvJFL sDKuUKgN8pAe9woWdwIWHC4jB/9dl9MMGEsOph11X0tC0sETcucst7sZ5EjbYRrX8Uu4sZXb +BDntJgcn+qQVL3O4qyoFL0BDDmewrZU09LB5zvUKmjzOLOEZ+b3C9ss9NvYsuL0p3NLCgn5 3CHU4sYfIlyLSjL0jpFotxMeuMIZtfW2AHH9PaMLYFXg5fy4gjlpZ1OyiMR3mmsjQASdsLK7 Gw8rf59sDvTQQS6MQ9o7Tcf0aXfCHReO3PaMuTfkib1de1/+LLQXDzC63p7Cx93ZtECWAV30 ATvgRG8fyOOK7VFmu81BCNcEVZ2Cc7LlngN5GI/Mzuzua2x3GRzT7YBWgGvb43yMvObgVrTg zpmWLU3wbG4vBq7terID6KKjxLV7zeDcJA4t8l3H3leuRaA+kkpQgqMb8SFZXJlb07szVU2T 6ubqAbZV01QXONidymkO5nRC+irtPNpXNzJcXBgGCb3s9mMqwTDZ8GVpWa0GHJTHCajuAs+O 6uK3YH3JTSBHiRZko7CxYvqM9itRanrnu8tL1u4slYakx+gbQRLF1uAtCEVrMdIBDrLzOmuU u69un8csQArewBmQnk1pUeQ7vAYowz0a3dHnIn1cSIUDYeVaf0kcmojFde+VI9VdkSIvqPdL m79Czj8xz+JWQAAcG1sHcGxtCgJ/hbbwjBy4ZxG9Rgs2xthxsfMa9vrd0QFBc0bLI3IHENuR A8GvdC7xhWIsyHiuZsH3NAfb/V4kMOJ6tLBEZZAwpSVwgoCwMKMX9I7N5XUXAFf1rPTmru6B wwVqTrgQGH/KOsrrhNCbF6wL3stkSLtLG1dV7m5zenwIJft+oPJ774/g8P7b2AVQR4K9//nK T1rjFtC5UkAVCkkdZCS2WVImbSTY404DjF6K4jaJtWXPB9wJU7Nyof3nkwQToY1weBHEDann B4izbPQGborqYfaMuzlz2n0UxhsCseiy2KYPg59wSy/RMBY1YgCFt7sclWJceXexSNEkxByg g5YCNklL9E8X7NTZYjnzef9FNsEL06mwGEFtkYF6hFZKqiLOyvZh9uqiqrQjJ4GiBmTPYzDl SB8LCihIVZNoZOKJhl9d3lgaXUyIEyz51mnRPT+5mqN7wXJDcPPCPd6m29Sh0PQ0L9y9LHag 9lCdUHXX2QsdtAIRSU+yFxD5+950OUdAmDZoCk4OP76HXxg4AuNo6wMcv1vIDcrd1KqpvMxf caM/V1PBuaj1VzmcSplFblNQzvZElKvzsqycugH4kO8qLQKareV82PFPTEtB4hdhnBawucVV FDO90bh45ixf97p4M5t4HwDeOBtrcG/LUGjexlldtIcPwPeM98QH0rU3U1+P1WRxctajCvij pRMyBPN27lXDJTGflhFLIlc/j1fKrkk5RiO/LS3KewjrDgdRKXQaL+H4CvYhpLNw/c2ba7gO GNdAGaSlD6PsvTCg3EWvxYWEN/Um2ByOjhqhs8vQZD+bLJ2DSVxJAAJ+2DuU3zx461lb+pY7 GQBxp33WzPhFUndWs6rJgpRbJmVsb05xysHdyD5WBCbOLDewXBIUTwgo7ma06z5VSJW+xqt2 7Z6lv5cIJW19+IFyaf82UJ5fvj6//Lx/ejhf/Xx+enx7fqFsnFyw4TzAnaEbitz9pphHVWFx 8DEoeQ/oyOK6Jj9ksbLgCSdrx6u3l/uHx6dvlGsRQ7uq9x5ifjUoEcOJSN4T8Heb7SrnaUkH tQEZ06nT2SkrWHY11xoGi6sQkQXBEdLqRZFBQvHbSHtbxfFdbHC7cVdW3GcwfzgbmTy9Kt4p rr2KLU3nxGibGqUGWrvNqBf5gR1sG2tls9Ko7ghk9Dm5jqnsyqwtZEddLClO6i/++qMbE7M0 yejrHu7ZBP6fCxe30m3aSLd6dlVAfDcuWNamlCsK6BgEq/YUQ7igNszpazRYu+KbmFoYUBnz pgki6HNpgRi05GpYKmBFqRs1KpAWoF74wH1EA2G+JikvbweQGqKgjqGL0KyVkRd5wEsKxV14 fKr9Vn5n6gjtKajryiSXBUtObRCmJovFYVMJu2fpjrCetluqK4EzExnL4JmSh/0zOTOZ07+Q dbTPm0jRA8XfVhNPSDXbhEG4V0IjJdCSwNlq4Sc6MoBJO5MBUFb4vp1vC/Lzvp2JFD4bmX62 NY2C6BvGkqTxhMi/qYM6QX1lWmo68aIQCe62TB08m3poK42iDJwh5YHL27FTKNcKb4KrBo9y OeC43iRdaIG29bXgBgy6oSYKW8Vb1OQVlu3jlpikosLU4PGN/uIkbFrnF/pE68lke/VMRydz iGhOuR/El9woOck/wwqobiVdunhuRTediXrJ2LPTO9IOaODOqI/uWE35dbOtJagVrq5HgtK5 91K9jXNX1UBWbLtRpQKNEm4t/C0aoofVbam1gUyGTXyndibjA4JucmZ4QdAJiSBoPky2wYAb M+ponS8JVALJEt4j1CC6aYpakZ/KCiaRILfHoMqTnBr+gq8tloJYg9gi0bZZ3R48neBrX4W1 MkyDpi62bEaPe8FUB2eDLl5lu3bhSrPf2oQ3AnV2FdAdaXCr5SF2xPuH74rHfqat6h2BT05m kvG+q4DTTmayjOWzZxQbnFRtmtgMNxCF45HWoOuKLIof/V4V2R/RIeKbPbHXJ6xY46Wd5ZTb RFuD1edDpy3Uegr2xzao/4hP+DeIOGruw/isla7KGHynUA46BH/3HhEwTEaJnjJm0yXFTwr0 X8Hi+tNvj6/PGNnqd+83CtjU25W8SuiZCgqR7Pvb15XkpSOvjd1tlL9cLSIOda/n9y/PV1+p luJbv6LCg4RDpp5EJGLnqr2NmqxU5zQq8d0yTWVJ5oIUmUZVLC1n13GVy5lr6kRohdruA3w5 3uE1Kwb4lo8p4p9xT+tPp2Z9R2mWCQczaPoUZ1JeRYX+U7Q5H0TGhtmR2ooywQ22WgIxX6t1 EbIndh5Z6OVvb2QNFOHWk1qxNnrZOUFbPTd68Qj5zZQexvUBlhsLi8HBge3Jkh1OWq5ZksOW SlHaHGS8g+Sls++czGyMkpgS/XKfn2Y2cRB4CyOxjmgNTkrkL2howR1H7eZW7Pz0k6WGzEhR w0ivqCUXkYILW77mUnSgK+63StgalOnLf+M6k+LhqxeglOkrICA8DWxqGveomZyIwdyHdvZq 5tuZKIbZuY5y61Xr11T6Zs2sxQfxUsU+8oVcVwrvqHwPtzbCAPjtf1/fvvxmoHp7BpWuWid1 RCFE6IXfpNSZEdbNgzYTGttUi6vCmDY9zZxrJsQ4dZqQu4S6yMhTafDAj7GtpO163FxTNuz4 Lez49E2jDFp+CETa8iuQlewbReP4Vo6iwajxKAePKmQxsX++oJziaBBruRZTR8Kzywk7qrWg fD9pkLX18/X04ufrub1V1lPqUVeFzNa2VlnO9IRBLsYh2K4uper51uEBLE9lcVdyKqnPyKPJ vq1g9KuGjKCNymUErYItI2x90vOXdKnXljpOLfSZhW6MtusiWbXUHdfAbPRPsiDEDTigFc16 RBijS2dLwgKQ13FTFWpJOacqQB6SBaGBc1slaZqEVJF2QZwm9JvSAIHzMy2s9AgQ8dMgpwSV AZE3cmw3pUHIMtdNdZ3Ifq+R0Z2Qxs0kT3CUkycd5VZZGLmeH95fHt/+MT1JXse30h6Av9oq vmlidPPXnbPHDS+uGByJoRsQWIE4Tu1mNTryjyMt5e42xqDDrzbatwWkzYOgyIec7l6sjUD8 5xptdZXI0fDMa+OesqWSyeP6WFSKt5eBVwZ07CB0FANnzSjOoeR434Oh99ogBemycx00IDWQ gwVH3zRFCdaFwfWLlfL44Be7IUdgoD0RZ+8Cm1fs029/vP75+PTH++v55efzl/Pv388/fp1f fjNaKC2CqJSDCukc6MZtUYUx2Ya3QUY9qw18FmxRjVD2DiWlH15HxTFvU5aRicuANg6qlL5W 5teKHIdH5jhteXHbvCBtWi3o4eZaLokFy7nQdbD8pPSFIpnaQGxZsoPDnGbn3aMyycUh/OhN wtsyrNokOn3yJjIXDur48Kn0DtLz3cCi39IAwxIaJEH665chm98ef97/RiH2cMTFkK6eWnqZ /em31+/3snSJgCO0CFSugGWZbMkM302DqEPo1QzKsgoSZit+33YBu80wwCDMFXUpQhCsfE0s xpfwBautYodM+dGi5A3yddOoock4K4qEZE4tkn1TjGtcILsHh0nw24/7py/oVOM/+NeX5/95 +s8/9z/v4df9l1+PT/95vf96hgQfv/zn8ent/A1X9//8+evrb2LBvz6/PJ1/8LCa5yd8qh8X /s5C+efzyz9Xj0+Pb4/3Px7/9x65kvlGnqAeNKrq49SRr74TdAUtVkDJN7Q6tgUG38wt7qMl Y2OyHD3bXo3ByFPf2fqSnopKXALI11Tcb7KmPMBpWZyF8potqCd5hRek8kanwJiLFjAuw+Ig 3bjhZoeSirjpffnn19vz1cPzy/nq+eVKLL9jawswvlIEZaKn0ZF9kw4zgSSaUHYdJuVe3iw0 hvnJXom8IRFNaKX44h1oJNA8rvcFt5YksBX+uixN9LWsotCngHcBJhTkL9hjzXQ7uvUDtM4L Nmnc9j6xVdRu6/mrrEkNRt6kNNHMif9D9G5T70GQ6odV+f7nj8eH3/86/3P1wEfYN4y5+I8x sCrFU66gRWbvxqHq77SnRpRkNHCrSPOb2dWgqQ6xP597irmO0HJ6f/t+fnp7fLh/O3+5ip94 2WHuXv3P49v3q+D19fnhkbOi+7d7+aWkTzqkAmT1rR9mZmvuQZIN/AlsG7fedDInZs0uYZ4a WqWfIfFNcnDVfx/Aenfou2TD3SChkPVqdEO4Cc2iyZGle1ptjsmQGGhxaH6bVkeDVhB5lFRh TkQmsP+hmwlz3O7trYl30nWTUYMJbdBNPbT71+9Dmxm9rYU90lakLCDqQVXuIJDicezx2/n1 zeygKpz6RB8h2czkRC6RmzS4jn2zwQXdbF9IvPYmUbI1ODsyfanV9ZbKIur2aGCSnyQwfrnN gcVzZ7eAZBHMDnviyFfvy0aGP7c4EB8QUzK8Sz//FClyJEKyFFl1Az2QpyYxI2j4XL4pdkRF 6l3lrUkf2oJ/LEXOYgA//vquuDcalhlGJA1Um1ONHpE3m8T20iQQVWjxsN6PvuJoCVfWj8MA HbAm5kYRBngVoMVkkXjUsEI66Ya+23ticx5s+b9EWtf74M7ml7rrtiBlgWsM9es/ubzH7rTj qqRthoZxNKOGS0x6e++Yx2KbEFO7o4+NLQbT889fL+fXV0U+Hxpyq5/3+n2AVO7pmKuZOUmE vo9B25vLIT6/9IWr4Izy/PMqf//55/nland+Or9oJ4lhCLOkDUtKVIyqzU4LMyFzyBVecMT6 qFed80JSDU9CGEl+TjA0TIz67PJBQJJ8e80/WaT/8fjnyz0cYF6e398en4hNP0023bw36d2e IAWdNrpxRNmrgyAxxKWUbBCaNQhr7hQGGMmmpjXS+y0L5NDkLv7kuSCu7K0Cx1g7h4yHoGHf 0Nt5TyopKBcF3ERGOfv1zLLZpB2GNRsrrC4zDTPqZM4n6zaMqzrZJiE+z5o6v+Ml7HXIVqgZ dkAgJugA93maEDGIzy9v6AwJpO1XHizs9fHb0/3bOxxTH76fH/6CE7cccwg1QeTr3UrRxDP5 DCPoqNz4VFeBXFXjewPBQ7N8mk3WC+VasMijoLrVi0O/xGK6MI0wfBarrSUfEXy24/9ECKBe 3eoDrSUijlkXBXFXUCqOLnpau4GjHax2FfWcnCZ5HFQt172RH/wDTR1yk4AMg25rpYbtba5B vMlDvH2uuH2bfPKVIWmca9ywqCJ1eUJ30zGcXbONJQBDFcIxDVZUeRqGSqgNdM5sCL5hm9RN q36lyt7wc4hHpU5kzoGJGG9uaVFVAsyIT4PqaLsgFYgN6bwYeAtl6wzVX3LQumRjHjFCSfFt OFNIgyOPikyqM1ECWlMEqWiUotPvcCGEnSxVJt+dWMA1qqzlolKplGltF5uaC6LJ8tGqLZys 4MfV8w4ZpN4+LAysSAtFdpWp+Cy1srAgTQdLHssbORx7wNA7qlDPCqoqUB6CuMVGLN1QoCWn fMmf82x4dLUWJuJO1m2K+BV6mAZcb2XPhRWVmxd5z8DAEYreYcRvyO0xsdguFbe60qqQFhv1 lzz1tKUjqAs4RSpTIb1r60BKAZ3LwP4sXYJlZSJi4Y0zZBtJiRcYxxwvZ+pKfuVDs71CSobB 1NSqW6I1Of3gXGw+BzuyCWrcF9TlpVv7jSVdvWXvt0pO/fXy+PT21xWIxldffp5fv5mPrqHQ OsLYJyms1ulwK7q0Im6aJK4/zYaGEyHqzBQGBAgeG3wmaeOqyuFwJ9fGWsLhxPH44/z72+PP bmd75dAHQX8x6xPn/D40a/CoiNYKY9dsK8ibK69/8ib+TNrCobFLjLGAJaW9AQURTzZg0oTZ x+gtCl0osTqQhxIf1ygYcI3/LGFZUMvzUufwMrVFnirvSCIV8bS3bfKwMx9Idnk79SlfAqJ+ ZZHoJmZySsc4uMbXcwzRSWtyf7TJRfgXPGc9PvTDLzr/+f7tG76OJE+vby/vP89Pb3KM82CX cI3jSnq6kIjDE43oxU+Tvz0KBRJBEqR0CoKHd6UNusCQxL6uFRjRMowvN0f8m5ymAwyv2zky Q0M+8jFNSVB9seJP+FxB+noXSUuN+as1YlyOVK5SWhRU7hx0rSQWbRyNilz4b53kDazjQR0w PHLuQcCSogk2G6avXn2En490vtoy4sFanyqo4t2fZrtnuCExSe8dVxmQyeOcKQY2Ig3kapuG xujXhvHdR1qiIenimNOOCJEJ04oVuRYLS+XgDirMx+jTkgq+iyvazlyUWth9WBS302YjbExs eiJdY8P+nsJ811vkEh2fIPm2Js473mIymViQw5vqdmvOqwGFpjktCwPKkWq3WPIH3kaNg8pg AY86VpxHw3quZXOg/WcIZl5kWdOZONOv33wAcm+u/LlYEhpCLiahoo7oXd65GHIziKJB8lNf j8dhqxeE7TV3fOL6H/FXxfOv1/9cpc8Pf73/Eqvt/v7pm/IEUWJMYZz6RVGSat4yH412G5jp KhNtjIumHsn4JN2UUL4ahpr8vsyKbW0yh7Lg6gNCTZDJwNIS9NgOHkoptRRm1u7RjQYsRrS6 2/EG9kvYNSPdO9Vg3OxqUqGDBvval3fczIhlRow6zQpDELtbN5nWm3qNWgBE2vpYwJ64juNS uyUQJ3Z8tRuX0n+9/np8wpc8qM3P97fz32f4z/nt4b///a8cvZprBGHaPLReFwRHPSZjVOXO ZtGur4TVsc6SCkT5po5P8rG/G9xdoDJjYR/gWgscj4IHa1lxtGi8dZkemWL0I6i8sNpyz/Wy 4pKCCrJWBnFMgBLEpGn9+DU2KZ5XyODTvCQwQVBvygi30g/ZobaUPP//0eHj8QDWxLoKVPU3 LkZCo7RNjo8JMGDFmd2xPF6Lfca9j8CfQ1xtCjaEMBFz7C+x73+5f7u/wg3/AS+gFNfkvAUT 9Xqk25V1i0Z1PO30XuTGq4kIUjwuRLhRwhkYJBe8GaoabmPrWBUsJVazCqu406IbvKFUYUMt FXK3K1clYcOdrNvGA/K1byUOGomjP086Xd7rtNEScOMb0kyjD1CjVMOYkzfdGaEyTgcKThhM gyCGdoVS2fHCJg9v60IPbzicXnjZKxt3VwXlnsZEt3BuhLm67ce8kgAnthl3rsG1n+S4ohyC Ro44MTiSn5CkFQWJllVza29thqFWdatb6UAZ8uahfN28fifHEq8EyAjbNNgxqjCoyFijDXoV tZuksGUd9FsB1YFNVnKTBGl6waqxhRXjmOSRosO7R3l2w1gvFQ2jSCm/fPlQn1/fcAnD3TbE SAX3386yDHPd5JbYdP3sxhuCoho9CZBgzdsAdREqJDeQ18Li0LVsqdwaVzBU8N4YZ5iIZmuJ SA8daMbQUlUC6WobeoP9rbyyWnMTfNRFK8IGyqBK9P8P4QvclnGFAQA= --n8g4imXOkfNTN/H1--